Index

a aberrant and atypical result. See continued method performance verification

absolute evaluation of intercept 158–159

acceptable deviation, evaluation of calibration models 159–160

acceptance criteria 27, 30, 79

– analytical procedures transfer 353, 355

– accuracy 132–135

– detector testing for 31

– for equivalence testing 358–363

– precision 95–107

– procedure performance acceptance criteria (PPAC) 51, 59–64, 69

acceptance limit 6, 30, 78–79, 83, 84, 125, 288, 291, 319, 320, 367

– for accuracy 121, 128

– for observed bias 125

– joint evaluation of accuracy and precision 136

– precision 158, 165, 175, 369

– specification 82, 97, 101, 105, 119, 166, 309, 310

accuracy 63–64, 177–178, 335

– and range 119–121, 137

– acceptance criteria (ATP requirements) 132–135

– drug product 126–127

– drug substance 122–126

– integration mode accuracy 130–131

– and precision joint evaluation 136

– response factors 131–132

– spiked impurities recovery 129–130

– quantitative tests 70

– relationship with precision 64–65

– actuation profile experiments 330–331

– additivity of variances principle 84–85

analysis of variance (ANOVA) 88, 90–92, 98–99, 101, 117, 264, 277

– lack-of-fit test 157

analytical instrument and system qualification (AISQ). See under analytical instrument qualification (AIQ)

analytical instrument qualification (AIQ) 12, 14, 18

– analytical instrument and system qualification (AISQ) risk-based approaches 20, 23–25

– data quality and integrity in good manufacturing practice (GMP) 11–12

– definition 14

– efficient and economic HPLC performance qualification 36–37

– – AIQ importance 25–27

– – continuous PQ general procedures 34–36

– – control charts 33–34

– – modular parameters transfer into holistic approach 29–32

– – OQ/PQ data in comparison with SST data 32–33

– – revised OQ/PQ parameter list development 27–29

– – importance of 25

– – roles and responsibilities 17–18

– – terminology clarification 19

– United States Pharmacopeia (USP) General Chapter <1058> 12, 14–20

analytical procedures transfer 348–349

– comparative testing 355–371

– coordination 350, 352

– experimental studies design and acceptance criteria 353, 355

– familiarization and training 353

Edited by Joachim Ermer and Phil Nethercote.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
analytical procedures transfer (contd.)
 – regulatory and international guidance 349–350
 – result evaluation and transfer report 355
 – strategy 352–353
analytical quality by design (AQbD)
 – control strategy 239–240
 – design of experiments (DOE) 225–227
 – failure mode effect analysis (FMEA) 227–230
 – illustrative case study 231–234
 – method validation requirements 220–221
 – robustness 221–223
 – statistical analysis for robustness example 234–237
analytical significance 84
analytical target profile (ATP) 4–8, 41, 326–334
 – bias and uncertainty in procedure 50–51
 – decision rules 42–43
 – compliance 43–45
 – guard bands 48–49
 – types 47–48
 – derivation 343–345
 – example 56–57
 – feasibility testing 345–346
 – finalizing 346
 – fitness definition 42
 – key performance indicators 51
 – measurement uncertainty 51
 – estimation 53–55
 – meaning 51–52
 – random variability sources 55
 – reporting 52–53
 – target measurement uncertainty
 – – analysis cost 49–50
 – – calculation 45–47
analytical transfer team (ATT) 350, 352
analytical validation
 – analytical life cycle 8–9
 – analytical target profile (ATP) 5–8
 – concepts and process development 1–4
 – three-stage approach to analytical life-cycle validation 4–5
assay 62
 – accuracy 63–65
 – linearity 67
 – precision 62–65
 – range 67–68
 – specificity 65–67
automated delivered dose uniformity procedure 333–334
autosampler 29
 – temperature accuracy 29
bias 119, 178
 – and uncertainty 50–51
calibration 19, 180–182
 – format optimization 97–99
 – of impurity determinations 99–101
 – model 121, 162
 – requirements 146
 – multiple point 146, 159
 – multi-variate 163
 – single-point 88, 119, 121, 151, 152, 158, 161–163, 308, 315
 – universal 122
chromatographic and functional assays
 359–363
chromatographic system suitability parameters 288–290
 – injection precision 291–293
 – signal-to-noise ratio 290–291
 – system precision for impurities 293
 – test for required detectability 291
chromatography data system (CDS) 35
coefficient of correlation 153–154
coefficient of variation (CV) 62–63, 85–86, 97–98
combined uncertainty 53
 – calculation 55
comparative testing
 – direct comparison 367–369
 – – accuracy 370–371
 – – precision 369–370
 – – equivalence-based methodology 355–356
 – – acceptance criteria for equivalence testing 358–363
 – – decision procedure 365–367
 – – inter-laboratory study 357–358
 – – principle 356–357
 – – real example 367
 – – statistical analysis 363–364
 – – transfer end-points 358
compendial/pharmacopeia test procedures
 implementation 348
 – background 337
 – challenges and need for verification 338–339
 – current approach to verification of procedures 339–340
 – current verification process and lifecycle approach integration 340
<table>
<thead>
<tr>
<th>Index</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>generation and publishing of methods</td>
<td>336–337</td>
</tr>
<tr>
<td>implementation using lifecycle approach</td>
<td>341–346</td>
</tr>
<tr>
<td>performance qualification</td>
<td>346–347</td>
</tr>
<tr>
<td>use of procedures in laboratory for first time</td>
<td>339</td>
</tr>
<tr>
<td>confidence intervals (CIs)</td>
<td>81–84, 150–151, 364</td>
</tr>
<tr>
<td>continued method performance verification</td>
<td>377</td>
</tr>
<tr>
<td>aberrant data investigation</td>
<td></td>
</tr>
<tr>
<td>atypical and aberrant results classification</td>
<td>393–399</td>
</tr>
<tr>
<td>laboratory failure investigation</td>
<td>391–393, 405</td>
</tr>
<tr>
<td>statistical outlier tests for out-of expectation results</td>
<td>399–405</td>
</tr>
<tr>
<td>continual improvement</td>
<td>406</td>
</tr>
<tr>
<td>control of change</td>
<td>406–409</td>
</tr>
<tr>
<td>routine monitoring</td>
<td>377–380</td>
</tr>
<tr>
<td>control chart application examples to analytical procedures</td>
<td>382–383</td>
</tr>
<tr>
<td>control chart establishment</td>
<td>380–382</td>
</tr>
<tr>
<td>periodic review</td>
<td>383–385</td>
</tr>
<tr>
<td>root cause determination using CuSum analysis</td>
<td>385–390</td>
</tr>
<tr>
<td>continuous knowledge feedback loop</td>
<td>342</td>
</tr>
<tr>
<td>continuous performance qualification (cPQ)</td>
<td>8</td>
</tr>
<tr>
<td>general procedures</td>
<td>34–36</td>
</tr>
<tr>
<td>control charts</td>
<td>33–34, 378–388</td>
</tr>
<tr>
<td>control strategy</td>
<td>342–343</td>
</tr>
<tr>
<td>critical analytical method variables (CAMVs)</td>
<td>218, 224</td>
</tr>
<tr>
<td>critical method attributes (CMAs)</td>
<td>218, 223–226, 231</td>
</tr>
<tr>
<td>critical method variables (CMVs)</td>
<td>218, 224, 231, 239</td>
</tr>
<tr>
<td>CuSum analysis</td>
<td>385–390</td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>data quality</td>
<td></td>
</tr>
<tr>
<td>components</td>
<td>14</td>
</tr>
<tr>
<td>triangle</td>
<td>14</td>
</tr>
<tr>
<td>enhanced</td>
<td>22</td>
</tr>
<tr>
<td>decision rules. See under analytical target profile (ATP)</td>
<td></td>
</tr>
<tr>
<td>design of experiments (DOE)</td>
<td>209, 212–213, 215, 218, 224–227, 231–234, 239, 245, 258, 286</td>
</tr>
<tr>
<td>design qualification (DQ)</td>
<td>14, 26</td>
</tr>
<tr>
<td>detection limit. See under quantitation limit detector drift</td>
<td>32</td>
</tr>
<tr>
<td>detector noise</td>
<td>31</td>
</tr>
<tr>
<td>differential scanning calorimetry (DSC)</td>
<td>122</td>
</tr>
<tr>
<td>diode array detection</td>
<td>142–143</td>
</tr>
<tr>
<td>diode array detector (DAD)-UV</td>
<td>199, 200</td>
</tr>
<tr>
<td>Dixon's Q-test</td>
<td>401–403</td>
</tr>
<tr>
<td>DryLab</td>
<td>245–256, 258, 270</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>empirical procedure</td>
<td>55</td>
</tr>
<tr>
<td>equivalence data analysis methods</td>
<td>363–364</td>
</tr>
<tr>
<td>equivalence tests</td>
<td>124–125, 132, 156</td>
</tr>
<tr>
<td>for intercept</td>
<td>158</td>
</tr>
<tr>
<td>EURACHEM approach</td>
<td>174, 266</td>
</tr>
<tr>
<td>expanded uncertainty</td>
<td>53</td>
</tr>
<tr>
<td>calculation</td>
<td>55</td>
</tr>
<tr>
<td>extrapolation</td>
<td>158–159</td>
</tr>
<tr>
<td>extreme studentized deviate (ESD). See Grubb's test</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>failure mode effect analysis (FMEA)</td>
<td>227–230, 331–333</td>
</tr>
<tr>
<td>fish-bone diagram</td>
<td>55, 74, 223, 231, 327, 329, 366</td>
</tr>
<tr>
<td>fit, robustness study</td>
<td>271–276</td>
</tr>
<tr>
<td>flow rate accuracy</td>
<td>29–30</td>
</tr>
<tr>
<td>Food and Drug Administration (FDA)</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>four Qs model</td>
<td>14–15</td>
</tr>
<tr>
<td>function of mutual information (FUMI)</td>
<td>84</td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>good manufacturing practice (GMP) data</td>
<td></td>
</tr>
<tr>
<td>quality and integrity</td>
<td>11</td>
</tr>
<tr>
<td>quality data criteria</td>
<td>11–12</td>
</tr>
<tr>
<td>regulatory rationale for qualified analytical instruments</td>
<td>12</td>
</tr>
<tr>
<td>Graybill–Wang Modified Large Sample (MLS) method</td>
<td>364</td>
</tr>
<tr>
<td>Grubb's test</td>
<td>399, 402</td>
</tr>
<tr>
<td>GUM</td>
<td>46–47</td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Hampel test</td>
<td>403–405</td>
</tr>
<tr>
<td>heteroscedasticity</td>
<td>160</td>
</tr>
<tr>
<td>high performance liquid chromatography (HPLC)</td>
<td>36–37, 195</td>
</tr>
<tr>
<td>– AIQ importance</td>
<td>25–27</td>
</tr>
<tr>
<td>– calculation method</td>
<td>396</td>
</tr>
<tr>
<td>– calculation table</td>
<td>398</td>
</tr>
<tr>
<td>– continuous PQ general procedures</td>
<td>34–36</td>
</tr>
<tr>
<td>– control charts</td>
<td>33–34, 378–388</td>
</tr>
<tr>
<td>– Dixon's test on example data</td>
<td>403</td>
</tr>
<tr>
<td>– Hampel's method on example data</td>
<td>405</td>
</tr>
<tr>
<td>– injection sequence</td>
<td>396</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>high performance liquid chromatography</td>
<td>308-310</td>
</tr>
<tr>
<td>(HPLC) (contd.)</td>
<td></td>
</tr>
<tr>
<td>method qualification for identity, assay,</td>
<td></td>
</tr>
<tr>
<td>and degradation products case study</td>
<td></td>
</tr>
<tr>
<td>accuracy</td>
<td>318-320</td>
</tr>
<tr>
<td>experimental</td>
<td>310</td>
</tr>
<tr>
<td>linearity</td>
<td>314-318</td>
</tr>
<tr>
<td>precision</td>
<td>320-321</td>
</tr>
<tr>
<td>qualification summary</td>
<td>310, 313-314</td>
</tr>
<tr>
<td>quantitation limit</td>
<td>321, 323</td>
</tr>
<tr>
<td>range</td>
<td>323-324</td>
</tr>
<tr>
<td>specificity</td>
<td>314</td>
</tr>
<tr>
<td>modular parameters transfer into holistic</td>
<td></td>
</tr>
<tr>
<td>approach</td>
<td>29-32</td>
</tr>
<tr>
<td>OQ/PQ data in comparison with SST data</td>
<td>32-33</td>
</tr>
<tr>
<td>peak area data</td>
<td>397</td>
</tr>
<tr>
<td>revised OQ/PQ parameter list development</td>
<td>27-29</td>
</tr>
<tr>
<td>risk assessment of change in column</td>
<td></td>
</tr>
<tr>
<td>manufacturer</td>
<td>408</td>
</tr>
<tr>
<td>sampling diagram</td>
<td>394</td>
</tr>
<tr>
<td>standard bracketing scheme</td>
<td>395</td>
</tr>
<tr>
<td>homoscedasticity</td>
<td>148</td>
</tr>
<tr>
<td>HorRat value</td>
<td>69, 93</td>
</tr>
<tr>
<td>Horwitz curve</td>
<td>93</td>
</tr>
<tr>
<td>Horwitz equation</td>
<td>68-69, 93</td>
</tr>
<tr>
<td>application to concentration values</td>
<td>69-70</td>
</tr>
</tbody>
</table>

\[i\]

injection precision. See system precision injection volume
- accuracy 27
- linearity 29

installation qualification (IQ) 14, 26
intermediate precision 62-63, 115-116, 179, 203-205, 321

International Conference on the Harmonisation (ICH) 1-2, 8, 41, 60, 242
International Society of Pharmaceutical Engineering (ISPE) 349-352
Ishikawa diagram. See fish-bone diagram

\[j\]

JMP Pro Statistical software (SAS, version 10.0) 234

\[l\]

lack-of-fit tests. See statistical linearity tests
Lambert–Beer law 147

law of propagation of errors 97
LC-MS 143-145
LC-Simulator ACD labs software 203
least-squares regression. See unweighted linear regression
leverage 150
limit of detection (LOD) 29
limit of quantitation (LOQ) 209
limit tests 69
- limit of detection (LOD) 69-70
- precision 70
- specificity 70
linear 145-147, 180, 335
- assay procedure 67
- calibration models 162
- DL/QL determination 167-174
- of injection volume and detector response 29
- nonlinear and regression techniques 162-163
- unweighted linear regression 147-151
- graphical evaluation 151-153
- intercept evaluation (systematic errors absence) 158-160
- numerical regression parameters 153-155
- statistical linearity parameters 155-158
- weighted linear regression 160-161

\[m\]

Maldener test 85
Manhattan plot 389-391
measurement requirement establishment 59-60
- assay procedure 62
- accuracy 63-65
- linearity 67
- precision 62-65
- range 67-68
- specificity 65-67
- identification 60-62
- impurities 68-69
- limit tests 69
- limit of detection (LOD) 69-70
- precision 70
- specificity 70
- purpose 60
- quantitative tests
- accuracy 70
- precision 71
- specificity and range 71
measurement uncertainty 51, 182
- estimation 53-55
- meaning 51-52
random variability sources 55
reporting 52–53
method capability index 78
method design and understanding 191–192
– analytical quality by design (AqBD) 217–220, 223–241
– control strategy 239–240
– design of experiments (DOE) 225–227
– failure mode effect analysis (FMEA) 227–230
– illustrative case study 231–234
– method validation requirements 220–221
– robustness 221–223
– statistical analysis for robustness example 234
case study robustness investigations 241–243
– basic and intrinsic parameters 243–245
– computer-assisted robustness studies examples 245–287
development 194–205
– optimization 203, 206–217
– selection 192–194
– system suitability tests (SSTs) 287–288
– chromatographic parameters 288–293
design 294
– non-chromatographic system parameters 293–294
method operable design region (MODR) 209, 212–215, 219, 237
method performance characteristics 73–74
– accuracy and range 119–121, 137
– acceptance criteria (ATP requirements) 132–135
– accuracy and precision joint evaluation 136
– drug product 126–127
– drug substance 122–126
– integration mode accuracy 130–131
– response factors 131–132
– spiked impurities recovery 129–130
detection and quantitation limit
– approached based on blank 167
– comparison of approaches 175–176
– DL/QL determination from linearity 167–174
– pharmaceutical impurity determination requirements 164–167
– precision-based approaches 174–175
– linearity 145–147, 163–164
– calibration models 162
– nonlinear and regression techniques 162–163
– unweighted linear regression 147–160
– weighted linear regression 160–161
– precision 74
– acceptance criteria 95–107
– benchmarks 107–116
– concentration dependency 93–95
– levels 84–89
– normal distribution and parameters 74–84
– sources 116–118
– and variance calculation 89–93
– specificity 137–140, 145
– chromatographic resolution 140–141
– demonstration by accuracy 140
– peak purity (co-elution) 141–145
method performance qualification 303–305
– analytical procedures transfer 348–349
– comparative testing 355–371
– coordination 350, 352
– experimental studies design and acceptance criteria 353, 355
– familiarization and training 353
– regulatory and international guidance 349–350
– result evaluation and transfer report 355
– strategy 352–353
– compendial/pharmacopeia test procedures implementation 348
– background 337
– challenges and need for verification 338–339
– current approach to verification of procedures 339–340
– current verification process and lifecycle approach integration 340
– generation and publishing of methods 336–337
– implementation using lifecycle approach 341–346
– performance qualification 346–347
– use of procedures in laboratory for first time 339
– HPLC method qualification for identity, assay, and degradation products case study 308–310
– accuracy 318–320
– experimental 310
– linearity 314–318
– precision 320–321
– qualification summary 310, 313–314
– quantitation limit 321, 323
– range 323–324
– specificity 314
– precision study example 305–307
method performance qualification (contd.)
– pressurized metered dose inhaler delivered dose uniformity procedure design and qualification
 – – analytical control strategy summary 336–337
 – – analytical procedures 324–325
 – – design to meet ATP 326–334
 – – human and environmental factors 325
 – – performance characteristics 334–335
 – – qualification 335–336
 – – testing for inhalation products 325–326
method qualification 9
mixture-related factors, in robustness studies 266–267
mobile phase proportioning 30
MODDE software package 267, 270, 271, 275, 280, 281, 286, 287
model independent tests 157–158
multiple linear regression (MLR) 262
n
noise and drift measurement 30–32
non-chromatographic system parameters 293
normal distribution curve 45
o
observed bias 133
omeprazole 61
one-factor-a-time (OFAT) approach 245
operationally defined procedure. See empirical procedure
operational qualification (OQ) 15, 26
 – comparison with SST data 32–33
 – revised parameter list development 27–29
 out-of-expectation (OOE) 385, 394, 399–405
 out-of-specification (OOS) 386, 391, 393, 405
p
percentage recovery calculation 127–128
performance-based approach 61
performance qualification (PQ) 15, 26–27
 – comparison with SST data 32–33
 – general procedures 34–36
 – revised list for HPLC instrument qualification 28
Plackett-Burman design 226–228, 260, 267–270, 279, 286
precision 62–63, 119, 178, 335
 – acceptance criteria
 – – acceptable precision for assay 101–105
 – – acceptable precision for impurities and minor components 105–107
 – – calibration format optimization 97–101
 – – benchmarks 107–108
 – – intermediate precision and reproducibility 115–116
 – – repeatability 108, 112–115
 – – system precision 108
 – concentration dependency 93–95
 – intermediate precision and reproducibility 86, 88–89
 – levels 84–89
 – limit tests 70
 – normal distribution and parameters 74–84
 – quantitative tests 71
 – relationship with accuracy 64–65
 – repeatability 86
 – reportable result 95–97
 – sources 116–117
 – – stability studies 117–118
 – system and instrument precision 85–86
 – variance calculation 89–93
 – – from linear regression 92–93
 – from linear regression 92–93
 – prediction interval 150–151
 – prediction profiler 235–236
pressurized metered dose inhaler delivered dose uniformity procedure design and qualification
 – analytical control strategy summary 336–337
 – analytical procedures 324–325
 – design to meet ATP 326–334
 – human and environmental factors 325
 – performance characteristics 334–335
 – qualification 335–336
 – testing for inhalation products 325–326
probability approach 64, 102–105
procedure acceptance criteria 61
procedure performance acceptance criteria (PPAC) 51, 59–64, 69
procedure performance measures (PPMs) 51, 59–61, 63, 65, 68
proportional model 158
pure error 271, 274
q
qualification 19, 25
 – design (DQ) 14
 – installation (IQ) 14, 26
 – method 9
 – operational (OQ) 15, 26
 – performance (PQ) 15, 26–28, 32–36
qualified equipment 8
qualitative factors, in robustness studies 266
quality analytical profile (QAP) 223
quality by design (QbD) 2–3, 9, 41–42, 194, 197, 214
 – method terminology 220
quality risk management (QRM) 11
quality target method profile (QTMP) 223
Quality Target Product Profile 5–6
quantitation limit 164, 176–177, 181, 321, 323
 – approached based on blank 167
 – comparison of approaches 175–176
 – DL/QL determination from linearity 167–169
 – approach based on German Standard DIN 172–173
 – regression line 95% prediction interval 171–174
 – relative uncertainty 173–174
 – standard deviation of response 169–171
 – pharmaceutical impurity determination requirements 164–165
 – general quantitation limit 166–167
 – intermediate quantitation limit 166
 – precision-based approaches 174–175
quantitative factors, in robustness studies 265–266
quantitative tests
 – accuracy 70
 – precision 71
 – specificity and range 71

r
range 180, 323–324. See also under accuracy
 – assay procedure 67–68
 – quantitative tests 71
rechromatography 141–142
recording limit 172
recovery 120, 122, 135, 319–320, 324
 – dose 333
 – function 128
 – impurities 129–130
 – percent 120, 126–128
regression
 – linear 92–93
 – multiple (MLR) 262
 – unweighted 147–160
 – weighted 148, 160–161
relative standard deviation (RSD) 7, 32–33, 65, 68–69, 75, 89–90, 94, 108, 135, 291, 292, 356, 363. See also precision
repeated median estimator 163
reportable result 6–8, 41–44, 95–97, 179–180, 228, 293, 303–305, 308, 324, 345–347
reproducibility 63, 115–116, 179, 207–275
residuals 151–152
residual standard deviation 154–155, 170
response factor 153
reversed phase chromatography 137–138, 196, 199
reversed-phase high-performance liquid chromatography (RP-HPLC) 198, 201
risk assessment model 23
risk priority number (RPN) 229–230
robust parameter 84
robustness investigations case study 242–243
 – basic and intrinsic parameters 243–245
 – computer-assisted robustness studies examples 245
 – – testing based on chromatography modeling software 246–258
 – – testing based on experimental design 258, 261–287
root mean square error (RMSE) 234
s
sensitivities 152–153
shaking profile experiments 329–330
signal-to-noise ratio 290–291
 – measurement 29
significance tests 84, 122–124, 156
solvent delivery system 29–30
specification
 – limit 46, 82, 97, 101, 105, 119, 166, 309, 310
 – out-of 385, 391, 393, 405
 – performance-based 59
 – zone 42, 47–48
specificity 60, 65, 137–140, 145, 181, 334
 – assay procedure 65–67
 – chromatographic procedures 65–66
 – chromatographic resolution 140–141
 – demonstration by accuracy 140
 – limit tests 70
 – non-chromatographic procedures 66–67
 – peak purity (co-elution) 141–145
 – quantitative tests 71
spiking 126
standard addition 128–129, 162
standard deviation 102
 – calculation 89
 – confidence intervals 82
 – distribution 77
 – of intercept 170–171
 – normally distributed datasets 78–80
Index

standard deviation (contd.)
– reporting 80–81
– uncertainty 80, 83
standard error 81, 82
– of prediction 129
statistical evaluations 158
statistical outlier tests, for out-of expectation results 399–405
studentized residuals 151
student-t-factor 82, 102
supercritical fluid chromatography (SFC) 196
system precision 80, 83, 85–87, 93, 108, 179, 291–293, 320–321
– for impurities 293
system repeatability 292
system suitability tests (SSTs) 26–27, 83, 108, 117, 182, 214, 304, 380
– chromatographic system suitability parameters 288–290
– – injection precision 291
– – signal-to-noise ratio 290–291
– – system precision for impurities 293
– – test for required detectability 291
– comparison with operational and performance qualification data 32–33
– design 294–295
– non-chromatographic system parameters 293–294

t
target measurement uncertainty
– analysis cost 49–50
– calculation 45–47
target standard deviation (TSD) 107
thermostating precision 29
tolerance/prediction interval approach 102
top-down approach precision 74

u
United States Pharmacopeia (USP) General Chapter <1058> 12, 14
– AIQ
– – roles and responsibilities 17–18
– – terminology clarification 19
– analytical apparatus, instruments, and systems 19–20
– analytical instrument qualification life cycle 14–15
– data quality triangle 14
– enhanced data quality triangle 20
– increased granularity 18–19
– instrument groups mapping to GAMP software categories 20
– risk-based classification of apparatus, instruments, and systems 15–17
– software validation 18
unweighted linear regression 147–160
user requirement specifications (URS) 26

v
validation 19, 25, 59
– analytical. See analytical validation
– characteristics 2, 138
– definition 59
– during drug development 60–61, 126, 129
– life-cycle 5, 8
– of linearity 147
– method 4, 220–221
– pharmacopoeial methods 338
– process 13, 378
– protocol 140
– simultaneous 137
– software 18, 310
– study 121
variance of injection 86

w
wavelength accuracy 30
weighted regression 148

z
z-scores 399–400