Chapter 1

INTRODUCTION

Statistics, the discipline, is the study of the scientific method. In pursuing this discipline, statisticians have developed a set of techniques that are extensively used to solve problems in any field of scientific endeavor, such as in the engineering sciences, biological sciences, and the chemical, pharmaceutical, and social sciences.

This book is concerned with discussing these techniques and their applications for certain experimental situations. It begins at a level suitable for those with no previous exposure to probability and statistics and carries the reader through to a level of proficiency in various techniques of statistics.

In all scientific areas, whether engineering, biological sciences, medicine, chemical, pharmaceutical, or social sciences, scientists are inevitably confronted with problems that need to be investigated. Consider some examples:

- An engineer wants to determine the role of an electronic component needed to detect the malfunction of the engine of a plane.
- A biologist wants to study various aspects of wildlife, the origin of a disease, or the genetic aspects of a wild animal.
- A medical researcher is interested in determining the cause of a certain type of cancer.
- A manufacturer of lenses wants to study the quality of the finishing on intraocular lenses.
- A chemist is interested in determining the effect of a catalyst in the production of low-density polyethylene.
- A pharmaceutical company is interested in developing a vaccination for swine flu.
- A social scientist is interested in exploring a particular aspect of human society.

In all of the examples, the first and foremost work is to define clearly the objective of the study and precisely formulate the problem. The next important step is to gather information to help determine what key factors are affecting the problem. Remember that to determine these factors successfully, you should understand not merely statistical methodology but relevant nonstatistical knowledge as well. Once the problem is formulated and the key factors of the problem are identified, the next step is to collect the
data. There are various methods of data collecting. Four basic methods of statistical data collecting are as follows:

- A designed experiment
- A survey
- An observational study
- A set of historical data, that is, data collected by an organization or an individual in an earlier study

1.1 DESIGNED EXPERIMENT

We discuss the concept of a designed experiment with an example, “Development of Screening Facility for Storm Water Overflows” (taken from Box et al., 1978, and used with permission). The example illustrates how a sequence of experiments can enable scientists to gain knowledge of the various important factors affecting the problem and give insight into the objectives of the investigation. It also indicates how unexpected features of the problem can become dominant, and how experimental difficulties can occur so that certain planned experiments cannot be run at all. Most of all, this example shows the importance of common sense in the conduct of any experimental investigation. The reader may rightly conclude from this example that the course of a real investigation, like that of true love, seldom runs smoothly, although the eventual outcome may be satisfactory.

1.1.1 Motivation for the Study

During heavy rainstorms, the total flow coming to a sewage treatment plant may exceed its capacity, making it necessary to bypass the excess flow around the treatment plant, as shown in Figure 1.1.1a. Unfortunately, the storm overflow of untreated sewage causes pollution of the receiving body of water. A possible alternative, sketched in Figure 1.1.1b, is to screen most of the solids out of the overflow in some way and return them to the plant for treatment. Only the less objectionable screened overflow is discharged directly to the river.

To determine whether it was economical to construct and operate such a screening facility, the Federal Water Pollution Control Administration of the Department of the Interior sponsored a research project at the Sullivan Gulch pump station in Portland, Oregon. Usually, the flow to the pump station was 20 million gallons per day (mgd), but during a storm, the flow could exceed 50 mgd.

Figure 1.1.2a shows the original version of the experimental screening unit, which could handle approximately 1000 gallons per minute (gpm). Figure 1.1.2a is a perspective view, and Figure 1.1.2b is a simplified schematic diagram. A single unit was about seven ft high and seven ft in diameter. The flow of raw sewage struck a rotating collar screen at a velocity of five to 15 ft/s. This speed was a function of the flow rate into the unit and hence a function of the diameter of the influent pipe. Depending on the speed of the rotation of this screen and its fineness, up to 90% of the feed penetrated the collar screen. The rest of the feed dropped to the horizontal screen, which vibrated to remove excess water. The solids concentrate, which passed through neither screen, was sent to the sewage treatment plant. Unfortunately, during operation, the screens became clogged with solid matter, not only sewage but also oil, paint, and fish-packing wastes. Backwash sprays were therefore installed for both screens to permit cleaning during operation.
1.1 Designed Experiment

Figure 1.1.1 Operation of the sewage treatment plant: (a) standard mode of operation and (b) modified mode of operation, with screening facility, $F =$ flow; $S =$ settleable solids.

1.1.2 Investigation
The objective of the investigation was to determine good operating conditions.

1.1.3 Changing Criteria
What are good operating conditions? Initially, it was believed they were those resulting in the highest possible removal of solids. Referring to Figures 1.1.1b and 1.1.2a, settleable solids in the influent are denoted by S_0 and the settleable solids in the effluent by S_1. The percent solids removed by the screen is therefore $y = 100(S_0 - S_1)/S_0$. Thus, initially, it was believed that good operation meant achieving a high value for y. However, it became evident after the first set of experiments were made, that the percentage of the flow retreated (flow returned to treatment plant), which we denote by z, also had to be taken into account. Referring to Figures 1.1.1b and 1.1.2a, influent flow to the screens is denoted by F_0 and effluent flow from the screens to the river by F_1. Thus, $z = 100(F_0 - F_1)/F_0$.
Figure 1.1.2 Original version of the screening unit (a) detailed diagram and (b) simplified diagram.
1.1.4 A Summary of the Various Phases of the Investigation

Phase a

In this initial phase, an experiment was run in which the roles of three variables were studied: collar screen mesh size (fine, coarse), horizontal screen mesh size (fine, coarse), and flow rate (gpm). At this stage,

1. The experimenters were encouraged by the generally high values achieved for \(y \).
2. Highest values for \(y \) were apparently achieved by using a horizontal screen with a coarse mesh and a collar screen with fine mesh.
3. Contrary to expectation, flow rate did not show up as an important variable affecting \(y \).
4. Most important, the experiment was unexpectedly dominated by the \(z \) values, which measure the flow retreated. These were uniformly very low, with about 0.01% of the flow being returned to the treatment plant and 99.9% leaving the screen for discharge into the river. Although it was desirable that the retreated flow be small, the \(z \) values were embarrassingly low. As the experimenters remarked, “[T]he horizontal screen produced a solid concentrate... dry enough to shovel.... This represented a waste of effort of concentrating because the concentrated solids were intended to flow from the units.”

Phase b

It was now clear (i) that \(z \) as well as \(y \) were important and (ii) that \(z \) was too low. It was conjectured that the matters might be improved by removing the horizontal screen altogether. Another experiment was therefore performed with no horizontal screen. The speed of rotation of the collar screen was introduced as a new variable.

Unfortunately, after only two runs of this experiment, this particular phase had to be terminated because of the excessive tearing of the cloth screens. From the scanty results obtained it appeared, however, that with no horizontal screen high solid removal could be achieved with a higher portion of the flow retreated. It was therefore decided to repeat these runs with screens made of stainless steel instead of cloth.

Phase c

A third experiment, using stainless steel collar screens of two mesh sizes, similar to that attempted in phase b, was performed with the same collar screen mesh size, collar screen speed (rpm), and flow rate (gpm) used before.

In this phase, with a stainless steel collar screen, high removal rates \(y \) were possible for eight sets of conditions for the factors just mentioned. However, these high \(y \) values were obtained with retreated flow \(z \) at undesirably high values (before, they had been too low). The objective was to get reasonably small values for \(z \), but not so small as to make shoveling necessary; values between 5% and 20% were desirable. It was believed that by varying flow rate and speed of rotation of the collar screen, this objective could be achieved without sacrificing solid removal.
Phase d

Again, using a stainless steel collar screen, another experiment, with two factors, namely collar screen speed (rpm) and flow rate (gpm), set at two levels each, was run. This time, high values of solid removal were maintained, but unfortunately, flow retreated values were even higher than before.

Phase e

It was now conjectured that intermittent back washing could overcome the difficulties. This procedure was now introduced with influent flow rate and collar screen mesh varied.

The results of this experiment lead to a removal efficiency of $y = 89\%$ with a retreated flow of only $z = 8\%$. This was regarded as a satisfactory and practical solution, and the investigation was terminated at that point.

For detailed analysis of this experiment, the reader should refer to Box et al. (1978, p. 354). Of course, these types of experiments and their analyses are discussed in this text (see Chapter 18).

1.2 A SURVEY

The purpose of a sample survey is to make inferences about certain characteristics of a population from which samples are drawn. The inferences to be made for a population usually entails the estimation of population parameters, such as the population total, the mean, or the population proportion of a certain characteristic of interest. In any sample survey, a clear statement of its objective is very important. Without a clear statement about the objectives, it is very easy to miss pertinent information while planning the survey that can cause difficulties at the end of the study.

In any sample survey, only relevant information should be collected. Sometimes trying to collect too much information may become very confusing and consequently hinder the determination of the final goal. Moreover, collecting information in sample surveys costs money, so that the interested party must determine which and how much information should be obtained. For example, it is important to describe how much precision in the final results is desired. Too little information may prevent obtaining good estimates with desired precision, while too much information may not be needed and may unnecessarily cost too much money. One way to avoid such problems is to select an appropriate method of sampling the population. In other words, the sample survey needs to be appropriately designed. A brief discussion of such designs is given in Chapter 2. For more details on these designs, the reader may refer to Cochran (1977), Sukhatme and Sukhatme (1970), or Scheaffer et al. (2006).

1.3 AN OBSERVATIONAL STUDY

An observational study is one that does not involve any experimental studies. Consequently, observational studies do not control any variables. For example, a realtor wishes to appraise a house value. All the data used for this purpose are observational data. Many psychiatric studies involve observational data.
1.5 A Brief Description of What is Covered in this Book

Frequently, in fitting a regression model (see Chapters 15 and 16), we use observational data. Similarly, in quality control (see Chapters 20 and 21), most of the data used in studying control charts for attributes are observational data. Note that control charts for attributes usually do not provide any cause-and-effect relationships. This is because observational data give us very limited information about cause-and-effect relationships.

As another example, many psychiatric studies involve observational data, and such data do not provide the cause of patient’s psychiatric problems. An advantage of observational studies is that they are usually more cost-effective than experimental studies. The disadvantage of observational studies is that the data may not be as informative as experimental data.

1.4 A SET OF HISTORICAL DATA

Historical data are not collected by the experimenter. The data are made available to him/her.

Many fields of study such as the many branches of business studies, use historical data. A financial advisor for planning purposes uses sets of historical data. Many investment services provide financial data on a company-by-company basis.

1.5 A BRIEF DESCRIPTION OF WHAT IS COVERED IN THIS BOOK

Data collection is very important since it can greatly influence the final outcome of subsequent data analyses. After collection of the data, it is important to organize, summarize, present the preliminary outcomes, and interpret them. Various types of tables and graphs that summarize the data are presented in Chapter 2. Also in that chapter, we give some methods used to determine certain quantities, called statistics, which are used to summarize some of the key properties of the data.

The basic principles of probability are necessary to study various probability distributions. We present the basic principles of elementary probability theory in Chapter 3. Probability distributions are fundamental in the development of the various techniques of statistical inference. The concept of random variables is also discussed in Chapter 3.

Chapters 4 and 5 are devoted to some of the important discrete distributions, continuous distributions, and their moment-generating functions. In addition, we study in Chapter 5 some special distributions that are used in reliability theory.

In Chapter 6, we study joint distributions of two or more discrete and continuous random variables and their moment-generating functions. Included in Chapter 6 is the study of the bivariate normal distribution.

Chapter 7 is devoted to the probability distributions of some sample statistics, such as the sample mean, sample proportions, and sample variance. In this chapter, we also study a fundamental result of probability theory, known as the Central Limit Theorem. This theorem can be used to approximate the probability distribution of the sample mean when the sample size is large. In this chapter, we also study some sampling distributions of some sample statistics for the special case in which the population distribution is the so-called normal distribution. In addition, we present probability distributions of various
“order statistics,” such as the largest element in a sample, smallest element in a sample, and sample median.

Chapter 8 discusses the use of sample data for estimating the unknown population parameters of interest, such as the population mean, population variance, and population proportion. Chapter 8 also discusses the methods of estimating the difference of two population means, the difference of two population proportions, and the ratio of two population variances and standard deviations. Two types of estimators are included, namely point estimators and interval estimators (confidence intervals).

Chapter 9 deals with the important topic of statistical tests of hypotheses and discusses test procedures when concerned with the population means, population variance, and population proportion for one and two populations. Methods of testing hypotheses using the confidence intervals studied in Chapter 8 are also presented.

Chapter 10 gives an introduction to the theory of reliability. Methods of estimation and hypothesis testing using the exponential and Weibull distributions are presented.

In Chapter 11, we introduce the topic of data mining. It includes concepts of big data and starting steps in data mining. Classification, machine learning, and inference versus prediction are also discussed.

In Chapter 12, we introduce topic of cluster analysis. Clustering concepts and similarity measures are introduced. The hierarchical and nonhierarchical clustering techniques and model-based clustering methods are discussed in detail.

Chapter 13 is concerned with the chi-square goodness-of-fit test, which is used to test whether a set of sample data support the hypothesis that the sampled population follows some specified probability model. In addition, we apply the chi-square goodness-of-fit test for testing hypotheses of independence and homogeneity. These tests involve methods of comparing observed frequencies with those that are expected if a certain hypothesis is true.

Chapter 14 gives a brief look at tests known as “nonparametric tests,” which are used when the assumption about the underlying distribution having some specified parametric form cannot be made.

Chapter 15 introduces an important topic of applied statistics: simple linear regression analysis. Linear regression analysis is frequently used by engineers, social scientists, health researchers, and biological scientists. This statistical technique explores the relation between two variables so that one variable can be predicted from the other. In this chapter, we discuss the least squares method for estimating the simple linear regression model, called the fitting of this regression model. Also, we discuss how to perform a residual analysis, which is used to check the adequacy of the regression model, and study certain transformations that are used when the model is not adequate.

Chapter 16 extends the results of Chapter 15 to multiple linear regressions. Similar to the simple linear regression model, multiple linear regression analysis is widely used. It provides statistical techniques that explore the relations among more than two variables, so that one variable can be predicted from the use of the other variables. In this chapter, we give a discussion of multiple linear regression, including the matrix approach. Finally, a brief discussion of logistic regression is given.

In Chapter 17, we introduce the design and analysis of experiments using one, two, or more factors. Designs for eliminating the effects of one or two nuisance variables along with a method of estimating one or more missing observations are given. We include two nonparametric tests, the Kruskal–Wallis and the Friedman test, for analyzing one-way and randomized complete block designs. Finally, models with fixed effects, mixed effects, and random effects are also discussed.
1.5 A Brief Description of What is Covered in this Book

Chapter 18 introduces a special class of designs, the so-called 2^k factorial designs. These designs are widely used in various industrial and scientific applications. An extensive discussion of unreplicated 2^k factorial designs, blocking of 2^k factorial designs, confounding in the 2^k factorial designs, and Yates’s algorithm for the 2^k factorial designs is also included. We also devote a section to fractional factorial designs, discussing one-half and one-quarter replications of 2^k factorial designs.

In Chapter 19, we introduce the topic of response surface methodology (RSM). First-order and second-order designs used in RSM are discussed. Methods of determining optimum or near optimum points using the “method of steepest ascent” and the analysis of a fitted second-order response surface are also presented.

Chapters 20 and 21 are devoted to control charts for variables and attributes used in phase I and phase II of a process. “Phase I” refers to the initial stage of a new process, and “phase II” refers to a matured process. Control charts are used to determine whether a process involving manufacturing or service is “under statistical control” on the basis of information contained in a sequence of small samples of items of interest. Due to lack of space, these two chapters are not included in the text but is available for download from the book website: www.wiley.com/college/gupta/statistics2e.

All the chapters are supported by three popular statistical software packages, MINITAB, R, and JMP. The MINITAB and R are fully integrated into the text of each chapter, whereas JMP is given in an independent section, which is not included in the text but is available for download from the book website: www.wiley.com/college/gupta/statistics2e. Frequently, we use the same examples for the discussion of JMP as are used in the discussion of MINITAB and R. For the use of each of these software packages, no prior knowledge is assumed, since we give each step, from entering the data to the final analysis of such data under investigation. Finally, a section of case studies is included in almost all the chapters.