INDEX

A
Abscissa, 32
Addition theorem of probability, 150
Alpha (α), 178, 210
Alternative hypothesis, 176–177
 in ANOVA, 290
 in assumption-free tests, 371
 in chi-square, 353, 361
directional, 194, 214, 234
nondirectional, 176–178, 214
null hypothesis in, 372
randomization tests and, 372–374
in t tests of difference between two means, 226, 252
in z and t tests of single means, 176–177, 214
Analysis of variance (ANOVA), 290
 vs. a priori comparisons, 310–314
assumptions about, 306, 319
comparisons with t, 301–302
effect size and, 319
logic of, 289–297
one-way, 289–322
 alternative hypothesis, 291
 assumptions about, 343
 between-groups variation, 292, 296
degrees of freedom in, 295–296, 316
effect size and, 306, 307
 F distribution and, 297
 F ratio and, 296–297
 grand mean and, 293
 inherent variations and, 293, 295
 null hypothesis and, 291
 post hoc comparisons and, 308–310
 power and, 307–308
 raw score formulas for, 302–303, 315–316
 for repeated measures, 314–319
 summary table for, 297–298, 316–317
 sum of squares and, 293–295, 314
 treatment conditions for, 291
 treatment effect and, 291
 within-groups variation and, 291–292, 296
 vs. planned comparisons, 310–314
 for repeated measures, 314–319
two-way, 326–350
 assumptions of, 343
cells, 327
 columns variation, 334
 degrees of freedom, 336–337, 347, 348
effect size and, 340–341
 F tests, 337–338, 350
 interaction and, 329–332
 interpreting outcomes, 339–340
 main effects of, 327–329
 mixed two-factor within-subjects design, 344–349
 planned comparisons and, 342–343
 rows variation and, 333–334
 rows X columns (interaction) and, 329–331
 simple effects and, 331–332
 sum of squares and, 332–336, 345–347
 total sum of squares and, 332–333
 variance estimates and F tests, 337–338
 within-cell variation and, 333

“And” rule of probability, 150

ANOVA tables
 one-way, 297–298, 316–317
two-way, 338, 347
Apparent limits of a score interval, 21
Applied statistics, 4–5
A priori comparisons, 310–314, 342–343
Arithmetic operations
 involving positive and negative numbers, 397
Assumption-freer methods, 371–391
 bootstrap method, 375–376
 Friedman’s rank test, 387–389
 Kruskal-Wallis test, 384–387
 Mann-Whitney U test, 376–380
 null hypothesis in, 372
 randomization tests and, 372–374
 rank-order tests and, 374–375
 sign test and, 380–382
 Spearman’s rank-order correlation coefficient, 106–107, 269
 Wilcoxon rank-sum test and, 376
 Wilcoxon signed-ranks test and, 382–384
Asymmetrical distribution, 43, 53–54
Asymptotic curve, 81

B
Bar diagram, 37–39
Bayesian statistics, 278–280
Bell-shaped distribution, 43
Beta (β), 211
Between-groups variance estimate, 296
Bimodal distribution, 43
Binomial distribution, 151–153, 429–431
Binomial expansion, 152–153
Bivariate distributions, 93, 95–96
Bivariate frequency distributions, 360
Bootstrap method, 375–376
Bootstrap samples, 375
Categorical data, 353
Cell, 327, 361
Cell frequency, 361
Central limit theorem, 167, 243, 360
Central tendency, 46
Chi-square (χ^2) distribution, 356–358, 360, 444
Chi-square statistic, 355
Chi-square tests, 353–368
assumptions in use of, 360
contingency tables and, 362–364
degrees of freedom and, 356, 364
effect size and, 359, 364–367
expected frequencies of, 354–356, 362–363
Friedman’s rank test and, 387
goodness-of-fit problems and, 353–356, 358–359
null hypothesis in, 353, 356–357, 361
observed frequencies and, 354–356
power and, 367
sampling distributions and, 357
sign test and, 380
as test for independence, 360–362
Yates’ correction and, 365
Class intervals, 18
Coefficient of determination, 144, 268
Coefficient of nondetermination, 141
Cohen’s d, 208, 237, 258, 278, 281
Concordance coefficient, 388–389
Conditional probability, 157
Confidence coefficient, C
advantages of, 276–277
vs. hypothesis testing, 275
Confidence intervals, 271–287
evaluating results of, 278–280
of μ_X, 273–275
of $\mu_X - \mu_Y$, 280–285
of ρ, 285–286
Confounding variables, 4
Constant, 5–6
Contingency tables, 361
Continuous variable, 6
Correlation
and cause-and-effect relationship, 107–109
meaning of degree of, 99–100
negative, 97
none, 97
phi coefficient (ϕ), 285–286
positive, 96–97
Spearman’s rank-order, 106–107
Correlation coefficient
Fisher’s z transformation, 267–268
inference about, 264–269
values required for different levels of significance, 441–442
Correlation coefficient (r and r_s), 100–101. See also Regression equation
cautions concerning, 110–114
formulas for
using deviation scores, 101
using raw scores, 101–103
using SPSS, 103–106
hugging principle, 137
product-moment, 100
range of talent, sensitivity to, 111
score transformation (linear) effects of, 110
Spearman’s rank-order, 106–107
Cramer’s phi, 365–366
Critical value(s), 179
Cross-products, 101
Cumulative frequency distributions, 22, 39–40
Cumulative percentage curve, 39–40
Cumulative percentage distribution, 24, 39
Curvilinear relationship, 96–97
D
d, 208, 237, 257, 278, 281
Degrees of freedom
chi-square tests, 356, 364
defined, 191
in one-way ANOVA, 295–296, 316
t test, 230, 251, 266
in two-way ANOVA, 336–337, 347–348
Dependent-samples design, 249
problems with using, 259–261
Dependent variable, 4
Descriptive statistics, 3
Determination, coefficient of, 144, 268
Deviational measures, 61–63
Deviation score, 50, 61
Dichotomous decision making, 271
Dichotomous observations, 151
Difference scores, 252
Directional (one-tailed) test, 234
Discontinuous distributions, 111–112
Discrete variable, 6
Disordinal interaction, 331
Distribution
binomial, 151–153
bivariate, 95–96
of chi-square, 356–358, 360, 444
cumulative frequency, 22
discontinuous, 111–112
frequency, 16–28
normal, 80, 82, 84–86
Distribution (contd.)
open-ended, 53
probability, 151–153
random sampling distribution of the mean, 164–168, 176
relative frequency, 21–22
sampling, 161
shape of, 42–43
skewed, 43
Student’s distribution of t, 191
t distribution, 189–191
Distribution-free methods, 371

E
Effect size
for chi-square, 359, 364–367
definition, 208
d family, 209, 237, 257, 278, 281
for Friedman’s rank test, 388
for Kruskal-Wallis test, 387
for Mann-Whitney U test, 379
versus p-values, 207
for t, single means, 208
for t, two dependent means, 258
for t, two independent means, 237–240
for two-way ANOVA, 340–341
for Wilcoxon signed-ranks test, 384
Empirical probability, 148
Epsilon-squared, 387
Equally-likely model of probability, 149
Error
in estimating Y from X, 130–132
Estimated standard error
for dependent samples, 250
of the difference between two means, 228, 230
of estimate, 125–126
of the mean, 187–189
Estimation, 272–273. See also Confidence intervals
Eta-squared, 306–307, 319, 340
Event, 148
independent, 150
Expected frequency, 354–356, 362–363
Expected value, 167
Experimental designs
factorial, 326
matched-pairs investigations, 250
matched-subjects design, 250
repeated-measures, 260, 315, 344
single-subject research design, 184

F
f (frequency), 20
Factorial design, 326
Factors, 291, 326
F distribution, 297, 436–439
Fisher’s z’, 267–268
values of, 443
Fractions, 398–399
F ratio
for one-way ANOVA and, 296–297, 316
for repeated measures ANOVA, 316
two-way ANOVA and, 338, 348
Frequency
expected, 354–356, 362–363
observed, 354–356
Frequency distribution, 16–28
bell-shaped, 43, 78–90
bimodal, 43
bivariate, 360
cumulative, 22
graphical representations of, 32–43
grouped, 19–21
J-shaped distribution, 42
normal, 78–90
open-ended distribution, 53
rectangular, 43
relative, 21–22
shape of, 42–43
skewed, 43
Frequency polygon, 34–35
Friedman’s rank test, 387–389

G
g, 208, 238, 258
Gambler’s fallacy, 151
Generalizing results, 220–221, 395
Generating event, 148
Glass rank biserial correlation coefficient, 379
Goodness-of-fit problems, 354. See also Chi-square tests
Grand mean, 293
Graphs, 32–43
bar diagram, 37–39
cumulative percentage curve, 39–40
factors affecting shape of, 40–42
frequency polygons, 34–35
histograms, 33–34
pie charts, 37–39
scatter diagrams, 95–96
zero point on, 32
Grouped frequency distribution, 19–21
Grouped scores, 18–19
Grouping error, 19

H
Harmonic mean, 309
Hedges’ g, 208, 238, 258
Histograms, 33–34
Homogeneity of variance, 229, 245, 295, 343
Homoscedasticity, 132
Hugging principle, 137
Hypothesis
- alternative, 176–177, 224–225
 - in ANOVA, 291
 - directional, 182, 194, 214, 234
 - nondirectional, 182, 214
- defined, 176–177
- of independence, 361
- main effect, 327
 - null, 176–177
 - in ANOVA, 291, 327
 - in assumption-freer tests, 372
 - in chi-square tests, 353, 361
 - in correlation, 265–266
 - defined, 176–177
- one-way analysis of variance and, 291–292
 - rejection of, 178
 - in \(t \) and \(z \) tests of single means, 176–177
 - in \(t \) tests of difference between two means, 225, 251

Hypothesis testing
- with assumption-freer tests, 371
- with categorical data (chi-square test), 353
 - vs. confidence intervals, 273–276
- of correlation coefficients, 265–267
- of no difference between two independent means, 224–245
 - one-tailed tests, 182–183, 234
 - power of the test and, 212, 241–242
 - region of rejection, 178, 357
 - region of retention, 178
 - single mean, 175–184, 187–202
 - statistical vs. practical differences, 205–206
 - with three or more groups (ANOVA), 289–322
 - two dependent means, 249–261
 - two independent means, 224–245
 - two-tailed tests, 182–183
 - Type I and Type II errors, 210–212

I
- \(i \) (interval width), 20

Independence
- null hypothesis for, 361
 - in a probability sense, 150, 157
 - between two variable, 360–362
- Independent events, 150
- Independent samples, 224
- Independent variable, 4

Inferential statistics
- 3, 160, 194
 - bootstrap method, 375–376
- Inherent variation, 293–295

Interaction
- 329–331
 - disordinal, 331
 - importance of, 331–332
 - ordinal, 331
- Interaction sum of squares, 335–336

Interval(s)
- 18–19
 - estimates, 271–287
 - midpoint, 34
 - scale, 7–8

J
- J-shaped distribution, 42

K
- \(k \)
 - for number of categories, 354
 - for treatment conditions, 291
- Kruskal-Wallis test, 384–387
- Kurtosis, 43

L
- Least-squares criterion, 120
- Least-squares regression, vs. resistant line, 121–122
- Leptokurtic, 43
- Level of significance, 178, 200–202, 214
 - choosing, 210–212
 - defined, 178
 - and power of tests, 212–213
 - versus \(p \)-values, 200–202
- Levels, of factors, 291, 326
- Linear interpolation, 26
- Linearity, assumption of, 120
- Linear transformation, 55, 110
- Line of best fit, 120

M
- Main effect, 327–329
- Mann–Whitney \(U \) test, 376–380, 445–446
 - vs. \(t \) test, 379–380
- Marginal totals, 361
- Measurement
 - scales of, 6–7
- Matched-pairs investigations, 250
- Matched-pairs rank biserial correlation coefficient, 384
- Matched-subjects design, 249

Mathematics
- review of basic skills, 396–402
- \(Mdn \) (symbol for median), 47

Mean
- 48–49
 - as balance point, 50
 - estimated standard error of the difference between, 228
 - grand mean, 293
 - hypothesis testing about, 176
 - properties of, 50–52
 - random sampling distribution of, 164–166
 - regression line as, 120
 - regression toward, 140
 - sampling distribution of difference between, 225–227
 - standard error of, 187–189
- Mean square between, 296
- Mean square error, 296
Mean square within, 296
Measurement
definition, 6
Measures of central tendency, 46–55
mean, 48–49, 48–52
median, 47–48
mode, 46–47
in normal vs. skewed distribution, 53–54
Measures of variability, 58–75
range, 19, 58
standard deviation, 62–69
variance, 61–62
Median, 47–48
properties of, 52–53
Mesokurtic, 43
Meta-analysis, 217
Minium’s laws
First, 12, 331
Second, 63
Third, 163
Mixed two-factor within-subjects ANOVA, 344–349
Mo (symbol for mode), 46
Mode, 46
properties of, 49–50
Moment, 100
Multiplication theorem of probability, 150
Mutually exclusive outcomes, 150

N
N (total number of cases in a population), 20
n (total number of cases in a sample), 20
Negative correlation, 97
Negatively skewed distribution, 43, 53
No correlation, 97
Nominal scale, 7, 14
Nondetermination, coefficient of, 141
Nondirectional alternative, 182–183, 195, 198
Nondirectional alternative hypothesis, 225
Nondirectional (two-tailed) test, 194
Nonparametric statistics, 371
Nonsignificant results, 206–207
Normal curve, 43, 78–90
areas under, corresponding to given values of z, 424–428
area under that falls between two known scores, 85–86
characteristics of, 81
equation of, 90
historical aspects of, 78–90
as model for real variables, 88
as model for sampling distributions, 88–89
standard, 83–88
standard scores and, 81–83
Null hypothesis, 176–178
in ANOVA, 291
in assumption-freer tests, 372
in chi-square test, 354, 361
criteria for rejection/retention, 178
defined, 176
of independence, 361
one-and two-tailed tests and, 182–183, 214–215
rejection of, 181
retention of, 181
in tests of single means, 176

O
Observed frequencies, 354–356
Observer bias, 184
Odds, 366
Odds ratio, 366
Ogive curve, 40
Omega, 359
Omega-squared, 307
Omnibus hypothesis, 291
One-tailed test, 182–183, 214–215
power of the test and, 216
One-way analysis of variance, 289–322
Open-ended distribution, 53
Operations
involving parentheses, 399–400
Order effect, 260
Ordinal interaction, 331
Ordinal scale, 7
“Or” rule of probability, 150
Orthogonal comparisons, 311
Outlier, 52, 68, 375

P
percentile, 24
proportion, 353
Parameter, 3, 160
Partial omega-squared, 341
Partition of variance, 142
Pearson’s coefficient of correlation, 92–114, 136–145, 264–268
Percentage curve, cumulative, 39–40
Percentile, 24–26
Percentile rank, 24, 28
Phi coefficient (φ), 364
Pie chart, 37–39
Placebo effect, 184
Planned (a priori) comparisons, 310–314, 342–343
Platykurtic, 43, 192
Point estimates, 272
Polygon, frequency, 34–35
vs. histogram, 35–37
Pooled estimate of population variance, 229
Population, 3, 160
formula for mean of, 48–49
parameter, value of, 160
standard deviation of, 63
variance, pooled estimate of, 229
Positive correlation, 97
Positively skewed distribution, 43, 53
Post hoc comparisons, 308–310, 339
Power curves, 219, 241
Power of a test, 212, 241
ANOVA and, 307–308
and chi-square test of independence, 367
defined, 212
difference between two dependent means, 259
difference between two independent means, 241–242
factors affecting, 212–215
tests of a single mean, 212–220
Prediction, 92, 118–134. See also Regression
Predictive error, 130–131, 140
Probability, 147–157
addition theorem of, 150
“and” rule of, 150
conditional, 157
defined, 148–149
empirical, 148
equally-likely model of, 149
of event, 148
independent events and, 150–151
multiplication theorem of, 150
mutually exclusive outcomes and, 158
“or” rule of, 150
Probability distribution, 151
binomial and, 151–153
defined, 151
Probability samples, 161
Product-moment correlation coefficient, 100
p-values, 200–202, 207, 272
Q
Q (semi-interquartile range), 60
Qualitative categories/variables, 353
Qualitative data, organizing, 16–18, 37–39
Qualitative variables, 7, 16, 37–42
Quantitative variables, 7
Quartile points, 60
R
r, 98, 239, 240, Correlation coefficient (r and r_s)
calculation of, 100–104
factors influencing, 110–114, 152
interpretation of, 137–145
proportion of correct placements, 144–145
as measure of effect size, 239
proportion of correct placements, 144–145
proportion of variation in Y not associated with variation in X, 140–142
random sampling distribution of, 264–265
regression equation, 137–139
values of, 98, 443
r^2, 144, 268
Random assignment, 243–245, 372
Randomization tests, 372–374
Random numbers, 163, 432–433
Random sampling, 3, 160–173
as experimental control, 244–245
generalizing results and, 220–221, 277–278
problems in selecting and in drawing conclusions, 220–221
vs. random assignment, 243–245
with replacement, 163
without replacement, 163, 173
Random sampling distribution, 164–172
of chi-square, 357
of F, 297
of mean, difference between two sample means, 225–227
normal curve as model for, 88–89
of r, 264–265
of z, 267–268
Range, 19, 58
properties of, 68
semi-interquartile range, 68
Range of talent, 111
Rank-order tests, 374–375
Ratio scale, 8
Raw scores, 19
transforming to z scores, 72
Real limits of a score, 21
Rectangular distribution, 43
Region of rejection, 178
Region of retention, 178
Regression, 118–133, 136–145
coefficient, 138
with SPSS, 128–130
standard-score form of equation, 122
toward the mean, 140
of Y on X, 124
Regression equation, 133
raw-score form of, 123–125
standard-score form of, 122–123
Regression line, 134
best-fit (least-squares), 120–
vs. resistant line, 121–122
as running mean, 121–122
Rejecting the null hypothesis, 181, 205–206
Rejection region, 178
Relative cumulative frequency distribution, 24, 40
Relative frequency distribution, 21, 151
Repeated-measures ANOVA, 314–319, 344–349
Repeated-measures design, 249, 260, 314, 344
Research conclusion, 5, 195, 221, 392
Research question, 4, 392
Resistant line, 121
Retaining the null hypothesis, 181, 211, 222
Retention region, 178
Rho, Spearman’s, 106–107
S

S (standard deviation of a sample), 63
Sample
 defined, 160
 definition, 4
 dependent, 249
 formula for mean of, 48–49
 independent, 224
 probability, 161
 standard deviation of, 63–64
Sample size
 for confidence intervals of \(\mu_X \) and \(\mu_X - \mu_Y \), 283–285
 hypothesis testing about difference between two independent means, 237, 241–242
Sample variance, calculation of, 67–68
Sampling. See also Random sampling
 random, 3, 161–163
 with replacement, 163
 without replacement, 163, 173
Scales of measurement, 6–8
 interval scale, 7–8
 nominal scale, 7
 ordinal scale, 7
 problems of statistical treatment and, 8–9
 ratio scale, 7
Slope of a line, 138
Spearman’s rank-order correlation coefficient \((r_s)\), 106–107, 269
Spearman’s rho, 106
Sphericity, assumption of, 319
SPSS, 13, 348–349
 for correlation, 103–106
 for regression, 128–130
 for standard deviation, 64–68
 for \(t \), dependent groups, 254–257
 for \(t \), independent groups, 234–237
 for \(t \), single mean, 198–200
Squares and square roots, 397–398
 Standard deviation, 69
 calculation with SPSS, 64–68
 calculation with raw-score method, 63–64
 of distribution expressed in \(z \) scores, 70–73
 of population, 63
 properties of, 68–69
 of sample, 63
 size of, 69
Standard error, 79, 167
 of a comparison, 311
 for dependent samples, 250–251
 of estimate, 125–127
 of the mean, 167, 187–189
 between two independent means, 228–230
Standardized normal curve, 82
 finding areas when score is known, 83–86
 finding scores when the area is known, 86–88
Standard scores, 70–73
 normal curve and, 78–95
 \(z \)-score formula for a value of \(\bar{X} \), 170
Statistic(s)
 applied, 4–5
 definition, 3
 descriptive, 3
 inferential, 3–4
 lying with, 9–11
 unbiased, 67
Statistical conclusion, 4, 195, 221, 392
Statistical inference, 160, 175
 bootstrap method, 375–376
Statistically significant result, 200–201, 205–207
Statistical Package for the Social Sciences (SPSS). See SPSS
Statistical question, 4, 392
Statistical reform in inferential statistics, 286
Statistical tables, 424–447
Studentized range statistic, 309, 339, 440
Student’s distribution of \(t \), characteristics of, 190
Student’s \(t \) distribution, 434–435
Summary table
 for one-way ANOVA, 297–298, 316–317
 for two-way ANOVA, 338, 347
Summation rules, 401–402
Symbols
 English letter symbols, 406–407
 Greek letter symbols, 405
 and meanings of, 396
Symmetrical distribution, 53–54, 81
\(S_{XY} \), 126–128
 error of prediction and, 136
T
Table of random numbers, 163
\(t \) distribution, 189–191
Theoretical relative-frequency distribution, 151
Treatment conditions, in one-way analysis of variance, 291
Treatment effect, 291
Index

\(t \) test
- comparison with \(F \), 301–302
- formula for, 196, 228–230, 251–252
- vs. Mann-Whitney \(U \) test, 379–380

Tukey’s HSD test, 308–309, 317–318, 339

Two-tailed test, 182–183, 214–215

Two-way analysis of variance (ANOVA)
- independent groups, 326–343
- mixed design, 344–350

Type I error, 210–212, 289

Type II error, 210–212

U
- Unbiased estimator, 187
- Unbiased statistic, 67
- Unimodal distribution, 81

V
- Variability, 58–74
 - measures of, 58
 - power of the test and, 214
 - range, 58–59
 - semi-interquartile range, 59
 - standard deviation, 62–63
 - variance, 61–62

Variables
- categorical, 353
- chi-square as test for independence between, 360–362
- confounding, 4
- continuous, 6
- dependent, 4
- discrete, 6
- independent, 4

Variance, 61–62
- assumption of homogeneity of, 229, 245, 295, 343
- calculation with raw-score method, 63–64
- deviation-score method of calculating, 61–62
- one-way analysis of, 290–322
- pooled estimate of population, 229
- population, 61
- sample, 61
- two-way analysis of, 326–350

in \(Y \) associated with variation in \(X \), 140–145

Variation
- inherent, 293–295
- within-groups, 291–292, 296, 333

W
- Wilcoxon rank-sum test, 376
- Wilcoxon signed-ranks test, 382–384, 447
- Within-cells sum of squares, 333
- Within-groups variation, 291–292, 296, 333

X
- \(X \) axis, 32

Y
- \(Y' \), 120
- Yates’ correction for continuity, 365
- \(Y \) axis, 32
- \(Y \) intercept, 137

Z
- Zero point on a graph, 32
- \(z \) scores, 70–73
 - areas under the normal curve corresponding to given values of \(z \), 424–428
 - formula for value of \(X \), 178
 - \(z' \) transformations, Fisher’s, 267–268