Index

Page references followed by f and t indicate an illustrated figure and table, respectively.

A
absolute percentage error (APE), 138
accountability, for unconstrained demand forecast, 13–14
accurate demand forecasts, 52
actionable information, versus data, 62–64
adoption, 2–4
aggregation, of data, 156
Amazon, xvi
analytical outputs, 19–20
analytics
 about, 2, 3f, 148
 anticipatory, 47, 56
 applying to downstream data, 22
 case study, 170–179
 consumption-based modeling, 167–170
 current state, 225
 demand planning, 194–199
 future state, 232–235
 gaps and interdependencies, 242
 predictability, 153–157
 segmentation of products, 157–167
 statistical models, 148–153
 strategic roadmap, 249–250
 analytics methods, 232
 analytics technology, 47–48, 56
 anticipatory analytics, 47, 56
APE (absolute percentage error), 138
ARIMA (autoregressive integrated moving average), 24, 80, 111, 152, 164, 173, 180, 199
ARIMAX (autoregressive integrated moving average with causal variables), 24, 25f, 80–81, 81f, 111, 152, 164, 180
automated consumer engagement, xvi–xviii, 46, 50, 55–56
automation, 92
autoregressive integrated moving average (ARIMA), 24, 80, 111, 152, 164, 173, 180, 199
autoregressive integrated moving average with causal variables (ARIMAX), 24, 25f, 80–81, 81f, 111, 152, 164, 180
average forecast accuracy, 24

B
barriers, to adopting downstream data, 69–70
baseline history, 75
benefits, 52–53, 52f, 57
big data
 See also data
 See also downstream data
about, 19, 60–62
big data (Continued)
 actionable information versus
data, 62–64
 case study, 75–77
 cleansing demand history, 26,
 74–75, 78–81, 92
 consumer/customer
 orientation, 64–65
 demand management data
 challenges, 71–75
 demand signal analytics (DSA),
 86–87, 87–89, 88f
 demand-signal repositories
 (DSRs), 82–86
 downstream data, 68–71
 eliminating information silos,
 65
 growth of, 92
 how much to use, 81–82
 sales & operations planning
 (S&OP), 65
 structured process supported
 by technology, 66–67
 technology, 65–66
 as a trend impacting supply
 chain, 15
 bullwhip effect, 19
 business priorities, core, 16
The Business Forecasting Deal:
 Exposing Myths, Eliminating
 Bad Practices, Providing
 Practical Solutions (Gilliland),
 10, 136

C
 case studies
 analytics, 170–179
 big data, 75–77
 Cecere, Lora, 60, 62
 centers of forecasting excellence,
 97–99, 123
 CEP (complex event processing),
 15, 49, 56
 challenges, current, 14–20
 champion, 2, 99–100
 change management, 112, 121
 Chase, Charles, 62
 cleansing demand history, 26,
 74–75, 78–81, 92
 coefficient of variation (CV),
 136–137, 136f
 collaboration
 cross-functional, 43, 55, 231
 with external value chain
 partners, 20
 collaborative (consensus)
 planning, 9–10, 237
 commercial teams, role of,
 121–122
 complex event processing (CEP),
 15, 49, 56
 consensus (collaborative)
 planning, 9–10, 237
 consumer centricity, 50
 consumer engagement,
 automated, xvi–xviii, 46, 50,
 55–56
 consumer packaged goods (CPG)
 companies, 69, 75–77, 101,
 167, 174f, 175f, 177f
 consumer panels, 83
 consumer/customer orientation,
 64–65
 consumption-based modeling
 about, xviii–xix, 27, 55,
 167–168
 case study, 170–179
 using MTCA, 178–179, 181
 using multi-tiered causal
 analysis, 168–170
 continued demand volatility, as a
 trend impacting supply
 chain, 14
 continuous business process
 improvements, 113
 corporate culture, xix–xx
CPG (consumer packaged goods) companies, 69, 75–77, 101, 167, 174f, 175f, 177f
cross-functional collaboration, 43, 55, 231
Crum, Colleen
Demand Management Best Practices, 39
current state
about, 223
analytics, 225
versus future state, 216–222, 218f, 220–222f
goals and objectives, 223
people, 224
process, 224–225
technology, 225–226
customer loyalty, 84
CV (coefficient of variation), 136–137, 136f

data versush actionable information, 62–64
aggregation of, 156
quality and availability of, 17–18
requirements for, 248
structured, 86
time series, 117
transactional, 116–117
data availability, storage and processing, 92
data cleansing, 79f, 232
data scientists, 185
DDVNs (demand-driven value networks), 38–39
delivered in-full, on-time (DIFOT), 114
demand
changing, xvii
fitting supply to, 11
fitting to supply, 11
linking with supply, 176–179, 241
demand analysts, 185, 239, 247
demand data
used for forecasting and planning, 18–19, 18f
what companies should use, 73–74
demand forecasts
See also forecasting
accuracy of, 24, 52
developing, 248–249
improving performance, 242
process flow, 196f
unconstrained, 231–232
demand history, cleansing, 26, 74–75, 78–81, 92
demand management
about, xiii
champion, 99–100
data challenges of, 71–75
importance of, 4–14
primary obstacles to achieving, 21–22
value of, 23–28
Demand Management Best Practices
(Crum and Palmatier), 39
Demand Management Best Practices: Process, Principles and Collaboration (Wight), 18–19
demand model, building, 172–173
demand pattern recognition, use of downstream data for, 101
demand planning
about, 184–188, 243
analytics, 194–199
background, 188
demand data used for, 18–19, 18f
demand information used by, 69–70, 69f
demand planning (Continued)
- forecast methodology, 188–190
- formalizing process of, 230, 250–251
- improving, 242–243
- migration path for, 246
- model hierarchy, 190
- model selection and interpretation, 199–204
- model selection criteria, 190–192
- scenario analysis, 205–211
- structure of, 248
- support for, 237–238
- supporting information, 192–193

demand sensing, 55, 100–113, 123, 124, 247

demand shaping, 55, 100–113, 104–105, 123, 124, 247

demand shifting (steering), 42f, 43, 55, 105

demand signal analytics (DSA) about, 48, 84, 86–87
- benefits of, 84–85, 87–89, 88f
- combined with DSR and DSV, 92

demand signal repository (DSR) about, 70–71
- benefits of demand signal analytics, 84–85
- combined with DSV and DSA, 92
- importance of, 86
- user benefits of, 85–86
- what they are, 83–84

demand signal visualization (DSV), 84, 92

demand stability, 156–157

demand-driven
- becoming more, xv, 39–40, 40f
- process of forecasting and planning, 41–44, 42f, 100, 106f
- demand-driven supply chain, transitioning to a, 40–46, 55
- demand-driven value networks (DDVN), 38–39
- demand planning brief, 185, 186–187, 187f, 213
- DIFOT (delivered in-full, on-time), 114
- direct store delivery (DSD), 13
- domain knowledge, 19–20, 107
- downstream data
 See also big data
 See also data
- about, 86, 124
- applying analytics to, 22
- importance of, 68–71
- improving forecast accuracy using, 233–234
- use of, 101, 240–241
- use of for demand pattern recognition, 101

DSA
 See demand signal analytics (DSA)

DSD (direct store delivery), 13

DSiM (SAP Hanna Demand Signal Management), 87

DSR
 See demand signal repository (DSR)

DSV (demand signal visualization), 84, 92

dynamic regression (predictive analytics), 24, 80, 111, 152, 164, 180, 199, 239

E

EDI [electronic data interchange] (wholesaler data), 84
EDIS (event-driven information systems), 49, 56
end-to-end partner communication and collaborative execution, as a trend impacting supply chain, 15
environment, competitiveness of, 157
ERP applications, 26, 45, 76, 83, 87, 167, 242
ESM (exponential smoothing methods), 25, 80, 199
event stream processing (ESP), 49, 56
event-driven information systems (EDIS), 49, 56
evolutionary new products, 160–162
exception, forecast by, 10–11
executive alignment, to support change management, 112
executive-level sponsorship, 227
exponential smoothing methods (ESM), 25, 80, 199
external factors, xvi
external value chain partners, collaboration with, 20

F
fast-moving products, 159, 161f, 163, 165f, 166f, 181, 233
feedback, via social media, xvii
finance function, 240
financial plan, 238
flexibility, 242
forecast accuracy
about, 145
average, 24
improving, 233–234
measuring, 234–235, 242
forecast error, 128
forecast value added (FVA), 9–10, 43, 55, 137–138, 139f, 140–144, 140f, 146, 235
forecast value added line, 137
forecastability, 128, 135–137, 145, 180
forecasting
See also demand forecasts
demand data used for, 18–19, 18f
demand information used by, 69–70, 69f
by exception, 10–11
lean, 9–10
methodologies, 5–6, 5f, 188–190
models for, 117–120
one-number, 6–9, 22
process of, 138, 140–144
size or volume of, 155
statistical, 180
strategic, 231
tactical, 231
tools for, 5–6, 5f
future state
about, 226–227
analytics, 232–235
versus current state, 216–222, 218f, 220–222f
goals and objectives, 227–228
people, 229–230
process, 230–232
technology, 235–237
FVA (forecast value added), 9–10, 43, 55, 137–138, 139f, 140–144, 140f, 146, 235

G
gaps and interdependencies
about, 237
analytics, 242
goals and objectives, 237–238
gaps and interdependencies (Continued)
people, 239
process, 240–241
technology, 242–245

Gilliland, Mike

The Business Forecasting Deal: Exposing Myths, Eliminating Bad Practices, Providing Practical Solutions, 10, 136

goals and objectives
current state, 223
future state, 227–228
gaps and interdependencies, 237–238
strategic roadmap, 246–247
governance model, 251
growth, delivering xv,
gut feeling judgment, 185

H
Hadoop, 87
H₀, 138, 140–144
hold-n-roll, 38
holistic modeling, 26, 77f, 80–81, 81f, 232, 242
holistic supply chain, 27, 181, 234
Holt-Winters Additive Exponential Smoothing, 76, 192
Holt-Winters Multiplicative Exponential Smoothing, 76
Holt-Winters Three Parameter Exponential Smoothing, 5, 19, 164, 192
horizontal processes
about, 244–245
versus vertical rewards, 122

I
IMS (Intercontinental Marketing Services), 68, 167
influences, changing, xvi
information processing, speed of, 243
information silos, eliminating, 65
in-memory processing, 68
in-sample/out-of-sample measurement, 131–135, 133f, 145
inside out focus, 122
integrated enterprise technology solutions, 56–57
intent, 4
Intercontinental Marketing Services (IMS), 68, 167
interdependencies
See gaps and interdependencies
internal champion, 124
internal factors, xvi
International Telecommunication Union (ITUs) Global Standards Initiative, 48
Internet of Things (IoT), 46–47, 48–49, 56
inventory movement, 84
inventory optimization (IO), 44, 45
IoT (Internet of Things), 46–47, 48–49, 56
ITUs (International Telecommunication Union) Global Standards Initiative, 48

K
key performance indicators (KPIs), xviii–xix, 13, 20, 41

L
large-scale automatic hierarchical forecasting, 108–113, 109f, 110f, 115–116, 236
latency/minimal latency, reducing, 102
leadership, 122
lean forecasting, 9–10
lifecycle management, 78
loyalty programs, 83

M
MAPE (mean absolute percentage error), 4, 128–131, 140–141, 140f, 145, 199–204, 242
market volatility and fragmentation, 2
marketing, reasons for, 12
Mass Mechanizing and Club channels, 175
mdigital-driven, 32
mean absolute percentage error (MAPE), 4, 128–131, 140–141, 140f, 145, 199–204, 242
Microsoft Excel, 19, 26, 33
migration path, 246
model hierarchy, 190
models
building, 199–204
comparing, 199–204
consumption-based modeling, xviii–xix, 27, 55, 167–179, 181
forecasting, 117–120
governance, 251
hierarchy of, 190
holistic, 26, 77f, 80–81, 81f, 232, 242
refitting, 175
selecting and interpreting, 199–204
selection criteria, 190–192
testing, 173–175
moving averaging, 5
multiple regression, 164

N
Nestle, 13
network design, 123
new products, 15, 159, 160–162, 161f, 165f, 166f, 180, 233
new world order, xviii–xix
next generation demand management, moving to, 2–3

O
objectives
See goals and objectives
Omni-channel, xvi, 49
one-number forecasting, 6–9, 22
online shopping, xvii
OOS (out-of-stock), 84
operations planning, 238, 240
opportunities, current, 14–20
outlier, 75
out-of-stock (OOS), 84
outside-in thinking, 45–46
Ovide, Shira, 60

P
Palmatier, George
Demand Management Best Practices, 39
paradigm shift, 113–115
PE (percentage error), 138
people
about, 2, 3f
current state, 224
future state, 229–230
people (Continued)
gaps and interdependencies, 239
strategic roadmap, 247
percentage error (PE), 138
performance metrics
about, 128, 235–236, 244
forecast value added (FVA), 9–10, 43, 55, 137–138, 139f, 140–144, 140f, 146, 235
forecastability, 128, 135–137, 145, 180
H_o, 138, 140–144
in-sample/out-of-sample measurement, 131–135, 133f, 145
mean absolute percentage error (MAPE), 4, 128–131, 140–141, 140f, 145, 199–204, 242
using, 250
persistent cost pressures, as a trend impacting supply chain, 15
phased approach, 247
POC (proof-of-concept), 75
point-of-sale (POS) data, 18–19, 39, 68, 70–71, 72f, 83, 84, 92, 105, 167
polarized supply chain, 23
POS (point-of-sale) data, 18–19, 39, 68, 70–71, 72f, 83, 84, 92, 105, 167
post reconciliation of performance, 112
POVs (proof-of-values), 26, 77f
predictability, 153–157
predictive analytics (dynamic regression), 24, 80, 111, 152, 164, 180, 199, 239
pretechnology roadmap, 243–244
prioritizing markets, 97
process
about, 2, 3f, 26, 96–97, 123
centers of forecasting excellence, 97–99
current state, 224–225
demand management champion, 99–100
demand sensing and shaping, 100–113
demand-driven forecasting and planning, 100, 106f
forecasting models, 117–120
future state, 230–232
gaps and interdependencies, 240–241
key components of, 108–113, 109f, 110f, 124–125
large-scale automatic hierarchical forecasting, 115–116
paradigm shift, 113–115
skill requirements, 120–121
strategic roadmap, 248–249
time series data, 117
transactional data, 116–117
process performance (efficiency), 128, 145
product chaining, 78
product innovation, 50–51
product portfolio, quadrants of, 159, 180–181
products
evolutionary new, 160–162
fast-moving, 159, 161f, 163, 165f, 166f, 181, 233
hierarchy of, 172f
new, 15, 159, 160–162, 161f, 165f, 166f, 180, 233
revolutionary new, 162
short-life-cycle, 162
slow-moving, 159, 160, 161f, 165f, 166f, 180, 233
steady-state, 159, 161f, 163–167, 165f, 166f, 181, 233
profit, increasing, 104
promotional data, 84
promotional volume, 75
proof-of-concept (POC), 75
proof-of-values (POVs), 26, 77f

R
randomness, 149, 235
request for information (RFI), 251
revolutionary new products, 162
RFI (request for information), 251
risk, minimizing, xv

S
sales & operations planning (S&OP)
about, 34–40, 34f
big data and, 65
failure of, 241
formula for, 55
objective of, 54–55
principles of, 35
process goals, purpose and needs, 39f
results of, 35
in supply chain, 34
same-day delivery, xvii
SAP Hanna Demand Signal Management (DSiM), 87
scalability, 65
scalable technology, 51–52
scenario analysis, 205–211
SCM (supply chain management), 27
segmenting
markets, 97, 180
sensing demand signals, 41, 42f, 43
shaping future demand, 42f, 43
short-life-cycle products, 162
silos, 240
skill requirements, 120–121
SKUs (stock-keeping units), xvii
slow-moving products, 159, 160, 161f, 165f, 166f, 180, 233
social media, xvii, 83
S&OP
See sales & operations planning (S&OP)
spreadsheet applications, 19, 26, 33
standardization, 242
statistical forecasting, 180
statistical methods, 107, 230–231
statistical models, 148–153
statistical skills (people), lack of, 11–13
steady-state products, 159, 161f, 163–167, 165f, 166f, 181, 233
stock-keeping units (SKUs), xvii
strategic forecasts, 231
strategic roadmap
about, 216, 245–246
analytics, 249–250
current state, 223–226
current state versus future state, 216–222, 218f, 220–222f
future state, 226–237
gaps and interdependencies, 237–245
goals and objectives, 246–247
people, 247
process, 248–249
technology, 250–251
structured data, 86
structured judgment, 78
supply
fitting demand to, 11
fitting to demand, 11
linking with demand, 176–179, 241
supply chain
digitalization of, 46–51, 47f, 55–56
equation for, 36–38, 37f
focal points for, 63f
holistic, 27
journey of, 54
management elements of, 61f
polarized, 23
sales & operations planning (S&OP) in, 34
starting the journey, 32–33, 33f
traditional view of, 122
trends impacting, 14–15
Supply Chain Insights LLC (website), 60
supply chain management (SCM), 27
supply plan/supply supportability analysis, 104
supporting information, 192–193
sustainable, 99
synchronization, improvement of with sales & operations planning (S&OP), 34f
syndicated scanner data, 68, 70–71, 72f, 83, 92, 105, 167
gaps and interdependencies, 242–245
scalable, 51–52
strategic roadmap, 250–251
structured process supported by, 66–67
templates, for data gathering, 251
3D printing, xvii
time series analysis, 159
time series data, 117
top-down approach, xvi
traditional supply chain equation, 36–38, 37f
transactional data, 116–117
transactions, focus on, 122
trends, that impact supply chain, 14–15
U
unconstrained demand forecast, accountability for, 13–14
V
VA (visualization analytics), 111–112
value, to the company, 180
vertical rewards, versus horizontal processes, 122
visualization analytics (VA), 111–112
volume, increasing, 104
W
weighted absolute percentage error (WAPE), 129, 138, 145
weighted MAPE (WMAPE), 129
what-if scenario, 176
wholesaler data (electronic data interchange [EDI]), 84
Wight, Oliver, 34, 39
Demand Management Best Practices: Process, Principles and Collaboration, 18–19
WMAPE (weighted MAPE), 129
T
tactical forecasts, 231
technology
about, 2, 3f
analytics, 47–48, 56
big data and, 65–66
current state, 225–226
future state, 235–237