Contents

About the Authors xv

Preface and Acknowledgments xvii

List of Abbreviations xix

Part One Introduction 1

1. Introduction 3

1.1 Overview of High-Power Drives 3
1.2 Technical Requirements and Challenges 5
 1.2.1 Line-Side Requirements 5
 1.2.2 Motor-Side Challenges 6
 1.2.3 Switching Device Constraints 7
 1.2.4 Drive System Requirements 7
1.3 Converter Configurations 8
1.4 Industrial MV Drives 11
1.5 Summary 14
 References 15
 Appendix 16

2. High-Power Semiconductor Devices 17

2.1 Introduction 17
2.2 High-Power Switching Devices 18
 2.2.1 Diodes 18
 2.2.2 Silicon Controlled Rectifier (SCR) 18
 2.2.3 Gate Turn-Off (GTO) Thyristor 21
 2.2.4 Gate Commutated Thyristor (GCT) 23
 2.2.5 Insulated Gate Bipolar Transistor (IGBT) 26
 2.2.6 Other Switching Devices 28
Contents

2.3 Operation of Series Connected Devices 29
 2.3.1 Main Causes of Voltage Unbalance 29
 2.3.2 Voltage Equalization for GCTs 29
 2.3.3 Voltage Equalization for IGBTs 31

2.4 Summary 32

References 33

Part Two Multipulse Diode and SCR Rectifiers 35

3. Multipulse Diode Rectifiers 37

3.1 Introduction 37

3.2 Six-Pulse Diode Rectifier 38
 3.2.1 Introduction 38
 3.2.2 Capacitive Load 40
 3.2.3 Definition of THD and PF 43
 3.2.4 Per Unit System 45
 3.2.5 THD and PF of Six-Pulse Diode Rectifier 45

3.3 Series-Type Multipulse Diode Rectifiers 47
 3.3.1 12-Pulse Series-Type Diode Rectifier 47
 3.3.2 18-Pulse Series-Type Rectifier 52
 3.3.3 24-Pulse Series-Type Rectifier 54

3.4 Separate-Type Multipulse Diode Rectifiers 57
 3.4.1 12-Pulse Separate-Type Diode Rectifier 57
 3.4.2 18- and 24-Pulse Separate-Type Diode Rectifiers 61

3.5 Summary 62

References 63

4. Multipulse SCR Rectifiers 65

4.1 Introduction 65

4.2 Six-Pulse SCR Rectifier 65
 4.2.1 Idealized Six-Pulse Rectifier 66
 4.2.2 Effect of Line Inductance 70
 4.2.3 Power Factor and THD 72

4.3 12-Pulse SCR Rectifier 74
 4.3.1 Idealized 12-Pulse Rectifier 75
 4.3.2 Effect of Line and Leakage Inductances 77
 4.3.3 THD and PF 78

4.4 18- and 24-Pulse SCR Rectifiers 79

4.5 Summary 80

References 81
5. Phase-Shifting Transformers

5.1 Introduction 83
5.2 Y/Z Phase-Shifting Transformers 83
 5.2.1 Y/Z-1 Transformers 83
 5.2.2 Y/Z-2 Transformers 85
5.3 Δ/Z Transformers 86
5.4 Harmonic Current Cancellation 89
 5.4.1 Phase Displacement of Harmonic Currents 89
 5.4.2 Harmonic Cancellation 90
5.5 Summary 92

Part Three Multilevel Voltage Source Converters 93

6. Two-Level Voltage Source Inverter

6.1 Introduction 95
6.2 Sinusoidal PWM 95
 6.2.1 Modulation Scheme 95
 6.2.2 Harmonic Content 97
 6.2.3 Over-Modulation 99
 6.2.4 Third Harmonic Injection PWM 99
6.3 Space Vector Modulation 101
 6.3.1 Switching States 101
 6.3.2 Space Vectors 101
 6.3.3 Dwell Time Calculation 104
 6.3.4 Modulation Index 106
 6.3.5 Switching Sequence 107
 6.3.6 Spectrum Analysis 109
 6.3.7 Even-Order Harmonic Elimination 111
 6.3.8 Discontinuous Space Vector Modulation 113
6.4 Summary 116
References 117

7. Cascaded H-Bridge Multilevel Inverters

7.1 Introduction 119
7.2 H-Bridge Inverter 120
 7.2.1 Bipolar Pulse Width Modulation 120
 7.2.2 Unipolar Pulse Width Modulation 121
7.3 Multilevel Inverter Topologies 124
 7.3.1 CHB Inverter with Equal DC Voltage 124
 7.3.2 H-Bridges with Unequal DC Voltages 125
Contents

7. Carrier-Based PWM Schemes
- 7.4 Carrier-Based PWM Schemes
 - 7.4.1 Phase-Shifted Multicarrier Modulation
 - 7.4.2 Level-Shifted Multicarrier Modulation
 - 7.4.3 Comparison Between Phase- and Level-Shifted PWM Schemes
- 7.5 Staircase Modulation
- 7.6 Summary
- References

8. Diode-Clamped Multilevel Inverters
- 8.1 Introduction
- 8.2 Three-Level Inverter
 - 8.2.1 Converter Configuration
 - 8.2.2 Switching State
 - 8.2.3 Commutation
- 8.3 Space Vector Modulation
 - 8.3.1 Stationary Space Vectors
 - 8.3.2 Dwell Time Calculation
 - 8.3.3 Relationship Between \vec{V}_{ref} Location and Dwell Times
 - 8.3.4 Switching Sequence Design
 - 8.3.5 Inverter Output Waveforms and Harmonic Content
 - 8.3.6 Even-Order Harmonic Elimination
- 8.4 Neutral-Point Voltage Control
 - 8.4.1 Causes of Neutral-Point Voltage Deviation
 - 8.4.2 Effect of Motoring and Regenerative Operation
 - 8.4.3 Feedback Control of Neutral-Point Voltage
- 8.5 Carrier-Based PWM Scheme and Neutral-Point Voltage Control
- 8.6 Other Space Vector Modulation Algorithms
 - 8.6.1 Discontinuous Space Vector Modulation
 - 8.6.2 SVM Based on Two-Level Algorithm
- 8.7 High-Level Diode-Clamped Inverters
 - 8.7.1 Four- and Five-Level Diode-Clamped Inverters
 - 8.7.2 Carrier-Based PWM for High-Level Diode-Clamped Inverters
- 8.8 NPC/H-Bridge Inverter
 - 8.8.1 Inverter Topology
 - 8.8.2 Modulation Scheme
 - 8.8.3 Waveforms and Harmonic Content
- 8.9 Summary
- References
- Appendix
9. Other Multilevel Voltage Source Inverters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>185</td>
</tr>
<tr>
<td>9.2</td>
<td>Multilevel Flying-Capacitor Inverter</td>
<td>185</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Inverter Configuration</td>
<td>185</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Modulation Schemes</td>
<td>186</td>
</tr>
<tr>
<td>9.3</td>
<td>Active Neutral-Point Clamped Inverter</td>
<td>188</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Inverter Configuration</td>
<td>188</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Switching States</td>
<td>189</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Principle of Switch Power Loss Distribution</td>
<td>190</td>
</tr>
<tr>
<td>9.3.4</td>
<td>Modulation Schemes and Device Power Loss Distribution</td>
<td>191</td>
</tr>
<tr>
<td>9.3.5</td>
<td>Five-Level ANPC Inverter</td>
<td>194</td>
</tr>
<tr>
<td>9.4</td>
<td>Neutral-Point Piloted Inverter</td>
<td>197</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Inverter Configuration</td>
<td>197</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Switching States</td>
<td>198</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Modulation Scheme and Neutral Point Voltage Control</td>
<td>199</td>
</tr>
<tr>
<td>9.5</td>
<td>Nested Neutral-Point Clamped Inverter</td>
<td>200</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Inverter Configuration</td>
<td>200</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Switching States</td>
<td>201</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Principle of Flying-Capacitor Voltage Control</td>
<td>202</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Modulation Schemes with Capacitor Voltage Balancing Control</td>
<td>204</td>
</tr>
<tr>
<td>9.5.5</td>
<td>High-Level NNPC Inverters</td>
<td>207</td>
</tr>
<tr>
<td>9.6</td>
<td>Modular Multilevel Converter</td>
<td>209</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Inverter Configuration</td>
<td>209</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Switching States and Arm Voltage</td>
<td>211</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Modulation Scheme</td>
<td>212</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Voltage Balancing of Floating Capacitors in MMCs</td>
<td>215</td>
</tr>
<tr>
<td>9.6.5</td>
<td>Capacitor Voltage Ripples and Circulating Currents</td>
<td>220</td>
</tr>
<tr>
<td>9.7</td>
<td>Summary</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>222</td>
</tr>
</tbody>
</table>

10. PWM Current Source Inverters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>10.2</td>
<td>PWM Current Source Inverter</td>
<td>228</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Trapezoidal Modulation</td>
<td>229</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Selective Harmonic Elimination</td>
<td>233</td>
</tr>
</tbody>
</table>
Contents

10.3 Space Vector Modulation 237
 10.3.1 Switching States 238
 10.3.2 Space Vectors 238
 10.3.3 Dwell Time Calculation 240
 10.3.4 Switching Sequence 242
 10.3.5 Harmonic Content 244
 10.3.6 SVM Versus TPWM and SHE 246

10.4 Parallel Current Source Inverters 247
 10.4.1 Inverter Topology 247
 10.4.2 Space Vector Modulation for Parallel Inverters 248
 10.4.3 Effect of Medium Vectors on DC Currents 250
 10.4.4 DC Current Balance Control 251
 10.4.5 Experimental Verification 252

10.5 Load-Commutated Inverter (LCI) 253

10.6 Summary 254
References 255
Appendix 256

11. PWM Current Source Rectifiers 257

 11.1 Introduction 257
 11.2 Single-Bridge Current Source Rectifier 257
 11.2.1 Introduction 257
 11.2.2 Selective Harmonic Elimination 258
 11.2.3 Rectifier DC Output Voltage 263
 11.2.4 Space Vector Modulation 265
 11.3 Dual-Bridge Current Source Rectifier 265
 11.3.1 Introduction 265
 11.3.2 PWM Schemes 266
 11.3.3 Harmonic Contents 267
 11.4 Power Factor Control 269
 11.4.1 Introduction 269
 11.4.2 Simultaneous α and m_a Control 269
 11.4.3 Power Factor Profile 273
 11.5 Active Damping Control 275
 11.5.1 Introduction 275
 11.5.2 Series and Parallel Resonant Modes 275
 11.5.3 Principle of Active Damping 276
 11.5.4 LC Resonance Suppression 278
 11.5.5 Harmonic Reduction 280
 11.5.6 Selection of Active Damping Resistance 283
 11.6 Summary 283
References 284
Appendix 285
Part Five High-Power AC Drives

12. Voltage Source Inverter Fed Drives

12.1 Introduction
12.2 Two-Level VSI-Based MV Drives
 12.2.1 Power Converter Building Block
 12.2.2 Two-Level VSI Drive with Passive Front End
12.3 Neutral Point Clamped (NPC) Inverter Fed Drives
 12.3.1 GCT-Based NPC Inverter Drives
 12.3.2 IGBT-Based NPC Inverter Drives
12.4 Multilevel Cascaded H-Bridge (CHB) Inverter Fed Drives
 12.4.1 CHB Inverter Fed Drives for 2300 V/4160 V Motors
 12.4.2 CHB Inverter Drive for 6.6 kV/11.8 kV Motors
12.5 NPC/H-Bridge Inverter Fed Drives
12.6 ANPC Inverter Fed Drive
 12.6.1 Three-Level ANPC Inverter Fed Drive
 12.6.2 Five-Level ANPC Inverter Fed Drive
12.7 MMC Inverter Fed Drive
12.8 10 KV-Class Drives with Multilevel Converters
12.9 Summary

References

13. Current Source Inverter Fed Drives

13.1 Introduction
13.2 CSI Drives with PWM Rectifiers
 13.2.1 CSI Drives with Single-Bridge PWM Rectifier
 13.2.2 CSI Drives for Custom Motors
 13.2.3 CSI Drives with Dual-Bridge PWM Rectifier
13.3 Transformerless CSI Drive for Standard AC Motors
13.4 CSI Drive with Multipulse SCR Rectifier
 13.4.1 CSI Drive with 18-Pulse SCR Rectifier
 13.4.2 Low-Cost CSI Drive with 6-Pulse SCR Rectifier
13.5 LCI Drives for Synchronous Motors
 13.5.1 LCI Drives with 12-Pulse Input and 6-Pulse Output
 13.5.2 LCI Drives with 12-Pulse Input and 12-Pulse Output
13.6 Summary

References
Contents

14. Control of Induction Motor Drives 321

14.1 Introduction 321
14.2 Reference Frame Transformation 322
 14.2.1 abc/dq Frame Transformation 322
 14.2.2 abc/αβ Stationary Transformation 324
14.3 Induction Motor Dynamic Models 325
 14.3.1 Space Vector Motor Model 325
 14.3.2 dq-Axis Motor Model 326
 14.3.3 Induction Motor Transient Characteristics 328
14.4 Principle of Field Oriented Control (FOC) 332
 14.4.1 Field Orientation 332
 14.4.2 General Block Diagram of FOC 334
14.5 Direct Field Oriented Control 335
 14.5.1 System Block Diagram 335
 14.5.2 Rotor Flux Calculator 336
14.6 Indirect Field Oriented Control 339
14.7 FOC for CSI Fed Drives 341
14.8 Direct Torque Control 344
 14.8.1 Principle of Direct Torque Control 344
 14.8.2 Switching Logic 345
 14.8.3 Stator Flux and Torque Calculation 348
 14.8.4 DTC Drive Simulation 349
 14.8.5 Comparison Between DTC and FOC Schemes 350
14.9 Summary 351
References 351

15. Control of Synchronous Motor Drives 353

15.1 Introduction 353
15.2 Modeling of Synchronous Motor 353
 15.2.1 Construction 353
 15.2.2 Dynamic Model of Synchronous Motors (SM) 355
 15.2.3 Steady-State Equivalent Circuits 358
15.3 VSC FED SM Drive with Zero d-Axis Current (ZDC) Control 360
 15.3.1 Introduction 360
 15.3.2 Principle of ZDC Control 360
 15.3.3 Implementation of ZDC Control in VSC Fed SM Drive 362
 15.3.4 Transient Analysis 365
15.4 VSC FED SM Drive with MTPA Control 367
 15.4.1 Introduction 367
 15.4.2 Principle of MTPA Control 367
Contents

15.4.3 Implementation of MTPA Control in VSC Fed SM Drive 370
15.4.4 Transient Analysis 371
15.5 VSC FED SM Drive with DTC Scheme 372
15.5.1 Introduction 372
15.5.2 Principle of DTC 373
15.5.3 Implementation of DTC Control in VSC Fed SM Drive 378
15.5.4 Transient Analysis 379
15.6 Control of CSC FED SM Drives 381
15.6.1 Introduction 381
15.6.2 CSC Fed SM Drive with ZDC Control 382
15.6.3 Transient Analysis of a CSC Fed SM Drive with ZDC Control 386
15.6.4 CSC Fed SM Drive with MTPA Control 388
15.7 Summary 390
15.8 References 390
15.9 Appendix 391

Part Six Special Topics on MV Drives 393

16. Matrix Converter Fed MV Drives 395
16.1 Introduction 395
16.2 Classic Matrix Converter (MC) 396
16.2.1 Classic MC Configuration 396
16.2.2 Switching Constraints and Waveform Synthesis 397
16.3 Three-Module Matrix Converter 401
16.3.1 Three-Phase to Single-Phase (3 × 1) MC Module 402
16.3.2 Three-Module MC Topology 405
16.3.3 Input and Output Waveforms 407
16.4 Multi-Module Cascaded Matrix Converter (CMC) 408
16.4.1 Nine-Module CMC Topology 409
16.4.2 Input and Output Waveforms 410
16.5 Multi-Module CMC Fed MV Drive 413
16.6 Summary 415
16.7 References 415

17. Transformerless MV Drives 417
17.1 Introduction 417
17.2 Common-Mode Voltage Issues and Conventional Solution 418
17.2.1 Definition of CM Voltages 418
Contents

17.2.2 CM Voltage Waveforms 419
17.2.3 Conventional Solution 421

17.3 CM Voltage Reduction in Multilevel VSC 422
17.3.1 Space Vector Modulation for CM Voltage Reduction 422
17.3.2 Reduction of CM Voltage Scheme 1 (RCM1) 424
17.3.3 Reduction of CM Voltage Scheme 2 (RCM2) 427
17.3.4 CM Voltage Reduction in n-Level VSC 430

17.4 Transformerless Drives with Multilevel VSC 434
17.4.1 Elimination of CM Voltages by Switching Scheme in Multilevel VSC 434
17.4.2 Suppression of CM Voltage by CM Filters 435
17.4.3 Combined Method of CM Filters and CM Voltage Reduction Schemes 439

17.5 Transformerless CSI Fed Drives 440
17.5.1 Conventional Solution 440
17.5.2 Integrated DC Choke for Transformerless CSI Fed Drives 441

17.6 Summary 444

References 445

Index 447