CONTENTS

Preface

1 Introduction 1

1.1. Role of Forest Mensuration in Forest Management, 2
1.2. Forest Mensuration as a Tool for Monitoring Forests, 3
1.3. Relevance of Forest Mensuration for Ecology and Nontimber Resources, 4
1.4. Design and Planning of Inventories, 5

 1.4.1. Timber Estimation, 5
 1.4.2. Nontimber Estimation, 7
 1.4.3. Inventory Planning, 7
 1.4.4. Forest Inventory Design, 10
 1.4.5. Inventory Fieldwork, 11

2 Principles of Measurement 13

2.1. Scales of Measurement, 14
2.2. Units of Measurement, 16
2.3. Systems of Measurement, 16

 2.3.1. International System of Units (Metric System), 16
 2.3.2. Imperial System, 18
 2.3.3. Conversions Between Systems, 20

2.4. Variables, 21
2.5. Precision, Accuracy, and Bias, 21
2.6. Significant Digits and Rounding Off, 23

 2.6.1. Significant Digits in Measurements, 23
 2.6.2. Rounding Off, 24
 2.6.3. Significant Digits in Arithmetic Operations, 25
2.7. Data Summary and Presentation, 27
 2.7.1. Tables, 28
 2.7.2. Graphic Presentation, 28
 2.7.3. Class Limits, 29
2.8. Fundamental Measurements, 30
 2.8.1. Linear Measurements, 30
 2.8.2. Time Measurements, 31
 2.8.3. Weight Measurements, 31
 2.8.4. Area Measurements, 32
 2.8.5. Volume Measurements, 33

3 Basic Statistical Concepts 34
 3.1. Descriptive Statistics, 34
 3.1.1. Population, 35
 3.1.2. Sample, 35
 3.1.3. Statistics, 38
 3.2. Frequency Distributions, 38
 3.3. Measures of Central Tendency, 40
 3.3.1. Arithmetic Mean, 40
 3.3.2. Quadratic Mean, 41
 3.3.3. Harmonic and Geometric Means, 42
 3.3.4. Median and Mode, 42
 3.4. Measures of Dispersion, 42
 3.4.1. Variance and Standard Deviation, 43
 3.4.2. Coefficient of Variation, 45
 3.5. Sampling Error, 45
 3.5.1. Standard Error of the Mean, 46
 3.5.2. Confidence Interval, 48
 3.6. Sample Size Determination, 50
 3.7. Influence of Scalar Transformations and the Estimation of Totals, 52
 3.8. Correlation and Regression Estimation, 53
 3.8.1. Covariance and Correlation, 53
 3.8.2. Simple Linear Regression, 56
 3.8.3. Goodness-of-Fit and Regression Diagnostics, 58
 3.8.4. Multiple Regression and Transformations, 61
 3.8.5. Advanced Topics in Regression Analysis, 63
 3.9. Use of Covariates to Improve Estimation, 63
 3.9.1. Ratio Estimation, 64
 3.9.2. Regression Estimation, 65

4 Land Area Determination in Forest Mensuration 67
 4.1. Land Distance and Area Units, 68
 4.2. Measuring Distances, 68
 4.2.1. Pacing, 69
 4.2.2. Distances with Chains and Tapes, 69
4.2.3. Optical Rangefinders, 71
4.2.4. Electronic Distance Measurement Devices, 71
4.2.5. Maps and Photos, 72
4.3. Measuring Area in the Field, 73
4.4. Measuring Area Using Maps and Photos, 73
 4.4.1. Area by Coordinates, 73
 4.4.2. Area by Dot Grids and Line Transects, 75
 4.4.3. Area by Planimeters, 76
4.5. Determination of Photo Scale, 76
4.6. Determination of Direction Using a Compass, 80
 4.6.1. Magnetic Declination, 80
4.7. The U.S. Public Land Surveys, 82
4.8. Global Positioning Systems, 86
 4.8.1. Components of GPS, 86
 4.8.2. How GPS Works, 86
 4.8.3. Accuracy of GPS, 87
 4.8.4. GPS Receivers, 88
 4.8.5. Using GPS Data in Forest Mensuration, 89
4.9. Geographic Information Systems, 89
 4.9.1. Applications of GIS to Forest Mensuration, 90

5 Individual Tree Parameters 92

5.1. Age, 92
5.2. Tree Diameters and Cross-Sectional Areas, 95
 5.2.1. Instruments for Measuring Diameter, 98
 5.2.2. Measurement of Upper-Stem Diameters, 103
 5.2.3. Cross-Sectional Area, 104
 5.2.4. Surface Areas, 106
 5.2.5. Applications to Understory Plants, 107
5.3. Height, 108
 5.3.1. Hypsometers Based on Similar Triangles, 110
 5.3.2. Hypsometers Based on Trigonometry, 112
 5.3.3. Special Considerations in Measuring Tree Heights, 117
 5.3.4. Use of LiDAR, 120
5.4. Form, 121
 5.4.1. Form Factors, 121
 5.4.2. Form Quotients, 122
 5.4.3. Taper Tables, Curves, and Formulas, 123
 5.4.4. Slenderness, 124
5.5. Crown Parameters, 125
 5.5.1. Crown Length, 125
 5.5.2. Crown Diameter and Area, 126
 5.5.3. Crown Surface Area and Volume, 127
 5.5.4. Foliage Area and Biomass, 128
 5.5.5. Other Crown Characteristics, 129
5.6. Regression and Allometric Approaches, 130
CONTENTS

5.6.1. Allometry of Standing Trees, 130
5.6.2. Applications to Seedlings, Saplings, and Understory Plants, 132

6 Determination of Tree Volume, Weight, and Biomass

6.1. Measurement of Individual Trees, 137
6.1.1. Stem Dissection, 137
6.1.2. Volume Determination by Displacement, 138
6.1.3. Volume Determination by Formulas, 139
6.1.4. Determination of Cubic Volume by Graphical Methods and Integration, 144
6.1.5. Determination of Crown and Root Volumes, 147
6.1.6. Determination of Bark Volume, 148
6.1.7. Weight Determination, 151
6.1.8. Biomass Determination, 153
6.1.9. Carbon and Nutrient Content Determination, 154

6.2. Allometric Equations for Volume, Weight, and Biomass, 156
6.2.1. Standard and Form Class Functions, 157
6.2.2. Local Functions, 158
6.2.3. Volume Functions to Upper-Stem Diameter Limits, 159

6.3. Tabular Estimation, 160
6.3.1. Descriptive Information to Accompany Tables, 165
6.3.2. Checking Applicability of Tables, 166
6.3.3. Conversion of Volume Tables to Weight, Biomass, or Carbon and Nutrient Tables, 166

6.4. Volume and Biomass Distribution in Trees, 167
6.4.2. Distribution of Weight and Biomass in Trees, 170

6.5. Other Methods of Estimating Tree Content, 173
6.5.1. Determination of Volume by Height Accumulation, 173
6.5.2. Importance Sampling and Centroid Methods, 176

6.6. Applications to Seedlings and Understory Vegetation, 179
6.7. Applications to Snags and Down Woody Material, 179
6.7.1. Standing Dead Trees, 179
6.7.2. Downed Woody Material, 181

7 Measurement of Primary Forest Products

7.1. Units of Measurement of Forest Products, 184
7.1.1. Board Foot, 184
7.1.2. Volume Units for Stacked Wood, 185

7.2. Log Rules, 186
7.3. Board Foot Log Rules, 186
7.3.1. Mill-Study Log Rules, 187
7.3.2. Diagram Log Rules, 187
7.3.3. Mathematical Log Rules, 189
7.3.4. Combination Log Rules, 191
7.3.5. Comparison of Log Rules, 191
7.3.6. Tabular Presentation of Log Rules, 192
7.4. Log Scaling, 195
 7.4.1. Board Foot Scaling, 195
 7.4.2. Cubic Volume Scaling, 198
 7.4.3. Unmerchantable Logs, 198
 7.4.4. Sample scaling, 198
7.5. Scaling Stacked Volume, 199
7.6. Volume Unit Conversion, 200
 7.6.1. Determination of Solid Cubic Contents of Stacked Wood, 202
7.7. Scaling By Weight, 204
 7.7.1. Weight Measurement of Pulpwood, 204
 7.7.2. Weight Measurement of Sawlogs, 207
 7.7.3. Weight Measurement of Pulp, 208
 7.7.4. Weight Measurement of Other Forest Products, 209

8 Stand Parameters, 210

8.1. Age, 211
 8.1.1. Even-Aged and Single-Cohort Stands, 211
 8.1.2. Uneven-Aged and Multicohort Stands, 211
8.2. Species Composition, 212
 8.2.1. Describing Species Composition, 213
 8.2.2. Number and Diversity of Species, 214
 8.2.3. Assigning Stand Types, 218
8.3. Diameter, 219
 8.3.1. Expressions of Mean Diameter, 220
 8.3.2. Basal Area, 221
 8.3.3. Diameter Distributions, 221
8.4. Height, 228
 8.4.1. Expressions of Mean Height, 229
 8.4.2. Height–Diameter Curves, 230
 8.4.3. Height–Diameter Ratio, 231
8.5. Volume, Weight, and Biomass, 232
 8.5.1. Volume, 232
 8.5.2. Weight, Biomass, and Carbon Content, 234
 8.5.3. Volume, Weight, and Biomass of Dead Wood, 235
8.6. Crown and Canopy Measurements, 236
 8.6.1. Crown Closure and Canopy Cover, 236
 8.6.2. Leaf Area Index, 237
8.7. Understory and Regeneration, 239
 8.7.1. Density and Frequency, 240
 8.7.2. Cover and Competition, 241
 8.7.3. Biomass and Forage, 246
 8.7.4. Regeneration Surveys, 247
8.8. Site Quality, 250
 8.8.1. Geocentric Approaches, 251
 8.8.2. Phytocentric Approaches Using Vegetation Composition, 253
 8.8.3. Dendrocentric Approaches, 254
 8.8.4. Preparation of Site Index Curves, 257
8.9. Density and Stocking, 259
 8.9.1. Relative Density Based on Volume, 260
 8.9.2. Stand Density Index, 261
 8.9.3. Tree–Area Ratio, 263
 8.9.4. Crown Competition Factor, 264
 8.9.5. Relative Spacing, 266
 8.9.6. Density of Mixed-Species and Complex-Structure Stands, 266
 8.9.7. Point Density and Competition Indices, 266
 8.9.8. Forest Stocking and Density Management Diagrams, 269

9 Sampling Units for Estimating Parameters 273
 9.1. The Factor Concept, 274
 9.2. Fixed-Area Plots, 276
 9.2.1. Circular Plots, 276
 9.2.2. Square and Rectangular Plots, 277
 9.2.3. Subplots, 278
 9.2.4. Selection of Plots and Trees, 279
 9.2.5. Stand and Stock Tables, 280
 9.2.6. Boundary Slopeover, 284
 9.3. Sampling Trees with Variable Probability, 287
 9.3.1. Horizontal Point Samples, 287
 9.3.2. Stand and Stock Tables, 293
 9.3.3. Boundary Slopeover Bias, 296
 9.3.4. Other Forms of Sampling Proportional to Size, 296
 9.4. Other Examples of Variable Probability Sampling, 298
 9.4.1. Point Intercept Sampling, 298
 9.4.2. Line Intercept Sampling, 299
 9.5. Distance-Based Sampling Units, 299
 9.5.1. Nearest-Neighbor Methods, 299
 9.5.2. Distance Sampling, 302
 9.6. Selecting Appropriate Sampling Units, 303

10 Sampling Designs in Forest Inventories 305
 10.1. Basic Considerations, 305
 10.1.1. Errors in Forest Inventories, 306
 10.1.2. Confidence Limits, 308
 10.1.3. Precision Level and Intensity, 310
 10.2. Simple Random Sampling (SRS), 311
 10.2.1. Influence of Plot Size on Simple Random Sample Designs, 315
 10.3. Systematic Sampling (SYS), 318
 10.3.1. Systematic Plot Sampling, 318
 10.3.2. Sampling Error for a SYS Inventory, 322
 10.3.3. Systematic Strip Sampling, 324
 10.4. Selective or Opportunistic Sampling, 326
 10.5. Stratified Sampling (STS), 327
 10.5.1. Estimation of Number of Sampling Units, 330
 10.5.2. Sample Efficiency, 332
10.6. Cluster Sampling, 334
10.7. Multistage Sampling, 338
10.8. Sampling with Covariates, 343
 10.8.1. Regression Sampling, 344
 10.8.2. Double Sampling, 349
10.9. List Sampling, 353
10.10. 3P Sampling, 357

11 Inventory of Standing Trees Using Sampling with Varying Probability 361

11.1. Horizontal Point Sampling (HPS), 362
 11.1.1. Angle Gauges for HPS, 362
 11.1.2. Photographic Methods, 367
 11.1.3. Sample Size, 368
 11.1.4. Choosing a Suitable Gauge Constant, 369
 11.1.5. Proper Use of Gauges, 371
 11.1.6. Checking Questionable Trees, 372
 11.1.7. Slope Correction, 374
 11.1.8. Leaning and Hidden Trees, 374
 11.1.9. Volume Estimation, 375
 11.1.10. Special-Purpose Modifications of HPS, 376
11.2. Subsampling in HPS, 377
 11.2.1. Big BAF Sampling, 377
 11.2.2. Point 3P Sampling, 382
11.3. Other Variable Probability Sampling Techniques, 386
 11.3.1. Horizontal Line Sampling (HLS), 386
 11.3.2. Vertical Point and Line Sampling, 389
 11.3.3. Critical Height Sampling, 391

12 Inventory of Downed Dead Material Using Sampling with Varying Probability 393

12.1. Fixed-Area Plots, 394
12.2. Line Intersect Sampling, 398
 12.2.1. Assumptions of Line Intersect Sampling, 399
 12.2.2. Estimating Downed Wood Parameters, 401
 12.2.3. Choosing a Line Length and Design, 404
 12.2.4. Adaptation for Fine Fuels, 406
12.3. Angle Gauge Methods, 406
 12.3.1. Transect Relascope Sampling, 406
 12.3.2. Point Relascope Sampling, 410
 12.3.3. Gauge Construction and Choice of Angle, 411
 12.3.4. Estimating Downed Wood Parameters, 413
 12.3.5. Practical Aspects, 413
12.4. Perpendicular Distance Sampling (PDS), 414
 12.4.1. PDS for Volume, 415
 12.4.2. Distance-Limited PDS, 419
 12.4.3. PDS for Other Attributes, 420
12.4.4. Estimating Multiple Downed Wood Attributes, 422
12.4.5. Choosing a Design and Factor, 424
12.5. Other Methods, 425
12.5.1. Diameter Relascope Sampling, 425
12.5.2. Critical Length Sampling, 426
12.5.3. Line Intersect Distance Sampling, 426
12.6. Design Considerations and Selection of Methods, 427

13 Integrating Remote Sensing in Forest Inventory 429

13.1. Types of Remotely Sensed Data, 429
13.1.1. Aerial Analog Photography, 431
13.1.2. Moderate-Resolution Optical Data, 433
13.1.3. High-Resolution Optical Data, 435
13.1.4. LiDAR, 436
13.1.5. Synthetic Aperture Radar, 440
13.1.6. Hyperspectral Data, 441
13.2. Remote Sensing for Stratification, 442
13.2.1. Photo Interpretation and Stand Mapping, 442
13.2.2. Pixel-Based Classification, 444
13.2.3. Object-Oriented Classification, 444
13.2.4. Effects of Misclassification on Estimation, 445
13.3. Individual Tree Measurements, 446
13.3.1. Crown Widths, 447
13.3.2. Tree Heights, 448
13.3.3. Estimating Stand Characteristics, 448
13.4. Remote Sensing for Covariates, 449
13.4.1. Tree and Stand Attributes and Sampling Covariates, 449
13.4.2. Applications to Ratio and Regression Sampling, 451
13.4.3. Imputation and Mapping, 453
13.4.4. Areal Importance Sampling, 454

14 Measurement of Tree and Stand Growth 455

14.1. Individual Tree Growth, 456
14.1.1. Tree Growth Curves, 456
14.1.2. Growth Percent, 458
14.2. Direct Measurement of Tree Growth, 460
14.2.1. Diameter Growth Measurement, 461
14.2.2. Height Growth Measurement, 462
14.2.3. Crown Growth Measurements, 463
14.2.4. Belowground Growth Measurements, 463
14.3. Reconstructing Tree Growth, 465
14.3.1. Stem Analysis, 465
14.3.2. Estimating Diameter Growth from Increment Cores, 466
14.3.3. Allometric Relationships, 472
14.4. Stand and Forest Growth, 474
14.4.1. Components of Stand Growth, 474
14.4.2. Types of Stand Growth, 475
<table>
<thead>
<tr>
<th>14.5.</th>
<th>Measurement of Stand and Forest Growth and Yield, 479</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5.1.</td>
<td>Stand Reconstruction, 479</td>
</tr>
<tr>
<td>14.5.2.</td>
<td>Estimation of Stand Growth and Yield from Temporary Sample Plots, 481</td>
</tr>
<tr>
<td>14.5.3.</td>
<td>Estimation of Stand Growth and Yield from Fixed-Area Permanent Sample Plots, 481</td>
</tr>
<tr>
<td>14.5.4.</td>
<td>Estimation of Stand Growth and Yield from Permanent Variable Probability Sample Points, 484</td>
</tr>
<tr>
<td>14.6.</td>
<td>Considerations for the Design and Maintenance of Permanent Sample Plot Systems, 494</td>
</tr>
<tr>
<td>14.6.1.</td>
<td>Sampling Unit Type, 497</td>
</tr>
<tr>
<td>14.6.2.</td>
<td>Sampling Unit Size and Shape, 498</td>
</tr>
<tr>
<td>14.6.3.</td>
<td>Sampling Unit Layout, 498</td>
</tr>
<tr>
<td>14.6.4.</td>
<td>Measurement Protocols, 499</td>
</tr>
<tr>
<td>14.7.</td>
<td>Growth and Yield Models, 503</td>
</tr>
<tr>
<td>14.7.1.</td>
<td>Stand Table Projection, 504</td>
</tr>
<tr>
<td>14.7.2.</td>
<td>Yield Tables and Equations, 509</td>
</tr>
<tr>
<td>14.7.3.</td>
<td>Diameter Distribution Models, 516</td>
</tr>
<tr>
<td>14.7.4.</td>
<td>Individual Tree Growth and Yield Models, 516</td>
</tr>
<tr>
<td>14.7.5.</td>
<td>Other Types of Models, 517</td>
</tr>
<tr>
<td>14.7.6.</td>
<td>Feedbacks between Growth and Yield Models and Forest Mensuration, 518</td>
</tr>
</tbody>
</table>

Appendix

| 519 |

References

| 550 |

Index

| 592 |