INDEX

A

Absolute zero, 31, 256
Acetic acid, 64, 136
Acids. See also Electrolytes
 anion names compared, 112
 definitions of, 338–341
 molarity of, 317
 naming of, 111–113
 neutralization of, 153, 352–354
 and pH, 349–351
 reactions of, 342–343
Acid ionization constant (K_a), 376–378
Acid rain, 356–357
Acid-type dry cell battery, 405
Actinide series, 204
Activation energy, 157, 372
Activity series of metals, 152, 401–403
Actual yield, 180
Addition, significant figures in, 19–21
Agitation, solid dissolving rate and, 312
Air pollution, 267
Air pressure measurement, 250–251
Alkali metals:
 compound formulas formed by, 223
 and halide solubility, 309
 and periodic table, 50, 203
Alkaline earth metals, 50, 203
Alkaline-type dry cell battery, 405
Allotropes, 267
Alpha-particle scattering, 87–88
Aluminum:
 and atomic structure, 201
 chromate, 103
 fluoride formation, 221
 specific heat of, 71
Amatore, Christian, 4
Ameritcum, 48
Amines, pharmaceutical uses of, 341
Ammonia, gaseous, 370
Ammonium phosphate, 103
Amorphous solids, 6
Amphoteric hydroxides, 343
Anhydrous crystals, 295–296
Anions:
 acid names vs., 113
 and compounds, 53
 formation of, 86, 105
 naming of, 84, 102
Anodes, 403
Argon, 48, 201
Arhenius, Svante, 84, 338
Arhenius acids and bases, 338
Art:
 oxygen in restoration of, 52
 synthesized molecules as, 235
Artificial sweeteners, 293
Atmosphere (atm), 250–251
Atmospheric mass, 46
Atmospheric pressure, 250, 285–286
Atoms:
 definition of, 45
 Lewis structures of, 216–217
Atomic clocks, 197
Atomic mass, 92–93
Atomic number (Z), 89–91
Atomic properties, periodic trends in, 213–216
Atomic radius, 214, 219–220
Atomic theory and structure, 82–94. See also
 Modern atomic theory
 and atomic mass, 92–93
 Bohr, Niels, 101, 194–195
 and atomic number, 89–91
 and periodic table, 50, 203
 structure of first eighteen elements, 198–201
 subatomic particles in, 85–86
Atomic weight, 92
Automobile storage battery, 405–406
Avogadro, Amadeo, 123
Avogadro’s law, 259–260
Avogadro’s number, 123
Avogadro’s law, 259–260
Avogadro’s number, 123
Buffer solutions, 381–383
Black, Joseph, 71
Bography, 87–88
Bromides, 223
Bromine, 136
Brønsted, J. N., 338
Brønsted–Lowry proton transfer, 338–339
Buffer solutions, 381–383
Calcium chloride, 322
Calculations, significant figures and, 18–21
Catalysts, 372–373
Carbon:
 and atomic structure, 199
 as ring structures, 198–201
 subatomic particles in, 85–87
 and atomic number, 89–91
 and periodic table, 50, 203
Carbonates, acids and, 342
Carbon dioxide, 247
 and mean ionic activity, 338
 and oxygen in blood, 382
Carbon tetrachloride, 228, 236
Carbonic acid, 342
Carbon monoxide poisoning, 151
Carbon tetrachloride, 228, 236
Cathodes, 403
Cathodic rays, 85–86
Cations:
 from binary ionic compounds, 106–108
 and compounds, 53
 formation of, 86, 100
 and ion discovery, 84
 containing two nonmetals, 108
 flow chart for naming, 112
 from, 102
 with metals, 105–108
 naming of, 105–109
 Black, Joseph, 71
 Bohr, Niels, 101, 194–195
 Bohr atom, 193–195
 Boiling point, 286–287
 Boiling point elevation constants, 320–324
 Bonds, see Chemical bonds
 Bond angle, 298
 Bond length, 298
 Boron, 199
 Boron trifluoride, 235
 Boyle’s law, 252–256
 Bromides, 223
 Bromine, 136
 Brønsted, J. N., 338
 Brønsted–Lowry proton transfer, 338–339
 Buffer solutions, 381–383
 von Liebig, Justus, 338
 Arrhenius, Svante, 84, 338
 Arrhenius acids and bases, 338
 Art:
 oxygen in restoration of, 52
 synthesized molecules as, 235
 Artificial sweeteners, 293
 Atmosphere (atm), 250–251
 Atmospheric mass, 46
 Atmospheric pressure, 250, 285–286
 Atoms:
 definition of, 45
 Lewis structures of, 216–217
 Atomic clocks, 197
 Atomic mass, 92–93
 Atomic number (Z), 89–91
 Atomic properties, periodic trends in, 213–216
 Atomic radius, 214, 219–220
 Atomic theory and structure, 82–94. See also
 Modern atomic theory
 and atomic mass, 92–93
 Bohr, Niels, 101, 194–195
 and atomic number, 89–91
 and periodic table, 50, 203
 structure of first eighteen elements, 198–201
 subatomic particles in, 85–86
 Atomic weight, 92
 Automobile storage battery, 405–406
 Avogadro, Amadeo, 123
 Avogadro’s law, 259–260
 Avogadro’s number, 123
 Baking soda, 342
 Balanced chemical equations, 145–149, 168
 Barium chloride dihydrate, 295
 Barometers, 250
 Bases. See also Electrolytes
 definitions of, 338–341
 neutralization of, 153, 352–354
 and pH, 349–351
 reactions of, 342, 343
 Bent molecular structure, 237, 238
 Benzenes, 136
 Berkelium, 199
 Binary acids, 111–112
 Binary compounds:
 acids derived from, 111–112

Cavities, 367
Celsius scale, 31
Chadwick, James, 86
Charles, J. A. C., 256
Charles’ law, 256–258
Chemical bonds, 212–240
 in complex Lewis structures, 232–234
 in compounds with polyatomic ions, 234–235
 covalent, 224–229
 and electronegativity, 226–229
 and formulas of ionic compounds, 222–224
 hydrogen, 291–294
 intermolecular, 292
 ionic, 217–222
 and Lewis structures of atoms, 216–217
 and Lewis structures of compounds, 229–232
 and molecular shape, 235–238
 and periodic trends in atomic properties, 213–216
Chemical calculations, 167–182
 limiting reactant calculations, 176–181
 mass–mass calculations, 174–176
 mole–mass calculations, 173–174
 mole–mole calculations, 170–173
 stoichiometry, 168–170
 yield calculations, 180–181
Chemical changes:
 energy in, 69
 and properties of substances, 65–68
Chemical equations, 143–162
 calculations from, 168–181
 combination reactions, 150–151
 decomposition reactions, 151–152
 double-displacement reactions, 153–155
 general format, 144–145
 and global warming, 159–161
 and heat in chemical reactions, 156–158
 information in, 149–150
 molecular representations of, 68
 single-displacement reactions, 152–153
 and stepwise sequences, 146–148
 and stoichiometry, 168–170
 symbols commonly used in, 144
 types of, 150–156
 writing and balancing, 145–150
Chemical equilibrium, 363–384
 and buffer solutions, 381–383
 and catalysts, 372–373
 and concentration, 368–370
 definition of, 365–366
 equilibrium constants, 373–374
 ionization constants, 376–378
 ion product constant for water, 374–376
 Le Châtelier’s principle, 366–373
 and pH control, 381–383
 rates of reaction, 364
 for reversible reactions, 365–366
 solubility product constant, 378–381
 and temperature, 371–372
 and volume, 370–371
Chemical formulas:
 of compounds, 54–55
 of ionic compounds, 103–104, 222–224
 percent concentration from, 130–131
Chemical kinetics, 364
Chemical properties, 63–65
Chemists, 2–3
Chemistry (term), 2
Chlorides, 223
Chlorine:
 and atomic structure, 201
 and electron arrangements, 218
 empirical and molecular formulas, 136
 gas, 225
 name of, 48
 oxy-acids of, 113
 p electron pairing in, 225
 physical properties of, 64
 relative radii of, 219
 sodium atoms reacting with, 217–218
Coal, 72–73
Cobalt, 48
Coins, modern technology and, 132
Combined gas laws, 260–262
Combination reactions, 150–151
Colligative properties, of solutions, 320–324, 348
Combination reactions, 150–151
Combined gas laws, 260–262
Combustion:
 gasoline, 69
 hydrogen, 299
 magnesium, 157
Common ion effect, 380
Compounds. See also Quantitative composition of compounds
 and anions, 53–54
 and cations, 53
 chemical formulas of, 54–55
 composition of, 55–57
 empirical formulas of, 133–137
 and ions, 53–54
 Lewis structures of, 222–223
 molar mass of, 126–129
 molecular and ionic, 52–54
 molecular formulas of, 135–137
 and molecules, 53–54
 percent composition of, 129–132, 135
 with polyatomic ions, 234
 registered, 53
Concentrated solutions, 313
Concentration, 307, 312–320
 dilute vs. concentrated solutions, 313
 dilution problems for, 319–320
 dilute vs. concentrated solutions, 313
 and equilibrium, 368–370
 mass percent, 313–315
 mass/volume percent, 315
 molarity, 315–319
 volume percent, 315
Condensation, 285
Conservation of energy, 70
Conservation of mass, 145
Conversion factors, 23–24
Copernicus, 101
Copper:
 atoms, 85
 isotypes of, 92
 mass of, 92
 and silver nitrate reaction, 155
 specific heat of, 71
Copper oxide formation, 66, 68
Covaleent bonds, 222–223
Crookes, William, 85
Crystals:
 surface area of, 311
 of table salt, 6
 Crystalline solids, 6
Currency, manufacturing of, 64
Dalton’s atomic model, 83–84
 early thoughts on, 83
 and electrical charge, 84–85
 and subatomic parts of atom, 85–87
Dalton’s law of partial pressures, 267–269
de Broglie, Louis, 195
Decomposition reactions, 151–152
Definite composition, law of, 56
Degrees in temperature measurement, 31
Density, 34–37, 270
Desalination, of seawater, 299
Diabetes, 252
Diatomic elements, 127–128
Diatomic molecules, 51, 100
Diborane, 136
Dilute solutions, 313
Dilution problems, 319–320
Dimensional analysis, 27–30
Dipoles, 227–228
Dipole–dipole attraction, 290–291
Dissociation, electrolytes, 345–346
Distillation, water, 299
Division, significant figures in, 18–21
Double-displacement reaction, 153–156
Drug delivery, acid–base chemistry of, 341
Dry cell batteries, 405
Earth, mass of elements in, 46–47
Egypt, ancient, 4
Electrical charge, 84–85, 87
Electrolysis, 66–68, 403
Electrolytes, 344–349. See also Acids; Bases;
 Salts
colligative properties of, 348
 dissociation and ionization of, 345–346
 from ionization of water, 348–349
 strong and weak, 346–348
Electrolytic cells, 403–405
Electromagnetic radiation, 192–193
Electromagnetic spectrum, 192
Electrons:
 arrangements in noble gases, 217
 configurations of, 199, 201
 in covalent bonds, 224–226
 electrical charge of, 87
 energy levels of, 195–198
 Ion–electron method for balancing redox reactions, 398–399
 in ionic bonds, 217–222
 and pair arrangement, 238
 and periodic table, 201–206
 properties of, 86
 relative mass of, 87
 Electronegativity, 226–229
Electropolating, of metals, 404–405
Elements, 44–58. See also Periodic table
 arranging by sublevel being filled, 204
 atomic numbers of, 89
 atomic structures of first eighteen, 198–201
 and atoms, 45
 broad categories of, 51
 collecting, 202
 in compounds, 52–57
 definition of, 45
 as diatomic molecules, 51
Gases, 248–276
Galvanic cells, 403–407
G
Gases, 46
in inorganic compounds, 100, 102–103
liquid and gaseous, 46
mass in Earth’s crust, seawater, and atmosphere, 46–47
mass in human body, 47
names of, 47, 48, 101
natural states of, 45–46
symbols of, 47–49
Empirical formulas: calculating, 133–135
molecular vs., 135–137
Endothermic reactions, 156–158
Energy. See also specific types in chemical changes, 69
conservation of, 70
definition of, 68–69
electrons, 195–198
in real world, 72–74
Engine coolant, 322
Equilibrium, 365. See also Chemical equilibrium
Equilibrium constants (K_eq), 373–374
Ethyl alcohol:
physical properties of, 287
specific heat of, 71
vapor pressure-temperature curves for, 286–287
Ethyl chloride, 287
Ethyl ether, 287
Evaporation, 284
Exothermic reactions, 156–158, 372
Experimental data, percent composition from, 135
Fahrenheit scale, 31
Falling water, conversion to electrical energy, 69
Families, periodic table and, 203
Flerov, Georgy, 101
Fluorescence, 193
Fluorine, 198, 292
Formula equations, 354–356
Fossil fuels, 159–161
Fracking, 73
Francium, 48
Freezing point, 31, 287–288
Freezing point depression constants, 320–324
Frequency, of waves, 192
G
Galvanic cells, 403–407
Gases, 248–276
Avogadro’s law for, 259–260
Boyle’s law for, 252–256
Charles’ law for, 256–258
combined gas laws, 260–263
common materials in, 7
Dalton’s law of partial pressures, 267–269
density of, 35, 270
formation of, 154
gas stoichiometry, 270–274
ideal, 266
ideal gas law, 264–267
and kinetic-molecular theory, 266
mole–mass–volume relationships of, 262–263
pressure of, 249–252
properties of, 7, 249–252
real, 266–267
solubility in water, 309
and standard conditions, 260
Gaseous elements, 46
Gasoline combustion, 69
Gas stoichiometry, 270–274
mass–volume calculations, 270–272
mole–volume calculations, 270–272
volume–volume calculations, 272–274
Gay-Lussac, J. L., 259
Gay-Lussac’s law, 259–260
Glassware, volume measurements and, 26
Global warming, 159–161
Gold, 71
Goldstein, Eugen, 86
Gray, Theodore, 202
Greenhouse effect, 159–161
Ground state, energy levels and, 194
Groups, of elements, 203
H
Haber, Fritz, 370
Haber process, 370
Halogens, 50, 203
Heat:
in chemical reactions, 156–158
and measurement of temperature, 30
qualitative measurement of, 70–71
Heating curves, 289
Heat of fusion, 289
Heat of reaction, 156–157
Heat of vaporization, 289
Helium, 45–46, 48, 199
Heterogeneous matter, 7
Heterogeneous mixtures, 7–9
Homogeneous matter, 7–8
Homogeneous mixtures, 7–9
Hot packs, 311
Human body, mass percent of elements in, 47
Hydrates, 295–296
Hydrazine, 136
Hydrocarbons:
energy from, 72–74
and fossil fuels, 157
names and formulas for, 73
Hydrochloric acid, 109, 111, 404
Hydrogen:
combustion of, 299
empirical and molecular formulas, 136
and energy release, 69
formation of hydrogen molecule, 224–225
isotopes of, 89–90
line spectrum of, 194
properties of compounds containing, 291
Hydrogen atom:
Bohr model of, 194
modern concept of, 198
orbitals for, 195
Hydrogen bonds, 291–294
Hydrogen carbonate–carbonic acid buffer, 383
Hydrogen chloride, 109, 111, 136
Hydrogen peroxide, 56, 152
Hydrogen ion, 339
Hydroxides, amphoteric, 343
Hypothesis, scientific method and, 4
Ice:
specific heat of, 71
and water in equilibrium, 297
Ice cream, 324
Ideal gases, 266
Ideal gas law, 264–266
Immiscible liquids, 307
Inner transition elements, 204
Inorganic compounds, 98–115
acids, 111–113
binary, 105–109
common and systematic names for, 99–100
elements and ions, 100–103
and ionic compound formulas, 103–104
from polyatomic ions, 109–110
Insoluble precipitate formation, 154
Intermolecular bonds, 292
Intermolecular forces, 290–295
dipole–dipole interactions, 290–291
hydrogen bonds, 291–294
London dispersion forces, 294–295
International System (SI), 21–23
Intramolecular forces, 290
Iodine, 48, 136
Ions. See also Anions; Cations
definition of, 53
discovery of, 84–85
and inorganic compounds, 100–103
ionic bond formation, 227–228
oxidation numbers for, 391
polyatomic, 109–110, 234, 392
spectator, 352
Ion–electron method (for redox reactions), 398–399
Ionic bonds, 217–222
Ionic compounds. See also Salts
characteristics of, 52–53
predicting formulas of, 222–224
writing formulas from, 103–104
Ionic equations, writing, 354–356
Ionic redox equations, balancing, 398–401
Ionization, of water, 339–341
Ionization constants (K_a), 376–378
Ionization energy, 214–216
Ion product constant for water (K_w), 374–376
Iron, 9, 71
Isotopes of elements, 89–91
J
Joules, heat measurement and, 70
K
K_a (acid ionization constant), 376–378
Keiffer, Susan W., 33
Kelvin scale, 31
K_eq (equilibrium constant), 373–374
Kevlar, 232
Kilogram (kg), 24–25
Kinetics, chemical, 364
Kinetic energy, 69
Kinetic-molecular theory (KMT), 266
K_sp (solubility product constant), 378–381
K_w (ion product constant for water), 374–376
L
L (liter), 26
Lanthanide series, 204
Laws:
natural, 56–57
scientific, 4–5
Periodic table, 49–52
Periods, of elements, 202–203
Percent yield, 180–181
Percent composition, of compounds, 129–132
Pentane, 174–175
Pentafoil, 235
Pauling, Linus, 226
Pauli exclusion principle, 196
Particle size, dissolving rate and, 311
Partial pressures, 267–269
Parrots, fluorescence and, 193
Ozone layer, 267
Oxy-acids, 112–113
Oxidizing agent, 394
Oxidation number, 391–395
Osmotic pressure, 325–326
Osmosis, 298, 325–326
Orbitals, 195–197
1 atmosphere (atm), 250–251
Old Faithful, 33
Octane, 174
Oxy-acids, 112–113
Oxidation number, 391–395
Oxidation–reduction, 390–409
and activity series of metals, 401–403
balancing equations, 395–398
balancing ionic redox equations, 398–401
in electrolytic and voltaic cells, 403–407
and oxidation number, 391–395
Oxidation state, 391
Oxides, 223
Oxidizing agent, 394
Oxalic acid, 235
Oxalic acid dihydrate, 235
Oxalic acid monohydrate, 235
Oxidation, 394
Oxygen: and atomic structure, 200
carbon dioxide exchange in blood, 382
collected over water, 269
corrosive effects of, 52
electronegativity of, 298
empirical and molecular formulas, 136
gases, 45
and hydrogen bonding, 292
percent of atmosphere, 46
physical properties of, 64
Ozone layer, 267
Parrots, fluorescence and, 193
Partial pressures, 267–269
Particle size, dissolving rate and, 311
Partitioning of matter, 5
Parts per million (ppm), 313
Pauli exclusion principle, 196
Pauling, Linus, 226
Pentafoil, 235
Pentane, 174–175
Percent composition, of compounds, 129–132
Percent yield, 180–181
Periods, of elements, 202–203
Periodic table, 49–52
actinide series on, 204
alkali metals on, 50
alkaline earth metals on, 50
electron structures, 201–206
groups/families on, 50, 203
halogens on, 50
inner transition elements on, 204
lanthanide series on, 204
metalloids on, 48
metals on, 50
noble gases on, 50
nonmetals on, 50
periods on, 202–203
representative elements, 50, 203, 204
transition elements on, 50, 203, 204
trends in atomic properties, 213–216
Petroleum, 72–73
pH: changes caused by HCl and NaOH, 382
common applications of, 351
of common solutions, 350
control of, 381–383
importance of, 351
as logarithmic scale, 350
scale of acidity and basicity, 349–350
test paper, 351
Phases, matter and, 7
Phosphate system, as buffer in red blood cells,
383
Phosphorous, 201
Phosphorus pentachloride, 109
Photorhodopsin, 109
Photon, 193
Physical changes, 65
Physical properties, 63–65
Physical states of matter, 6–7
Photons, 193
Photons, 193
Photons, 193
Planck, Max, 194
Polyatomic ions, 109–110, 234, 392
Polyatomic compounds, 113
Potassium, 92
Potassium chloride, 103
Potassium hydroxide, metals and, 341
Potassium nitrate, 103
Pressure: ppm (parts per million), 313
Pressure: of gases, 249–252
and molecule number/temperature of gases,
249–252
and solubility, 310
and volume of gases, 252–256
Principle energy levels, 195–197
Problem solving, 68
Products, 67, 144, 145
Properties (term), 63. See also specific types
Protons, 86
Pure substances, distinguishing mixtures from,
8–9
Quadratic equation, 377–378
Quanta, 194
Quantitative composition of compounds:
calculating empirical formulas, 133–135
calculating molecular formula from empirical
formula, 136–137
empirical formula vs. molecular formula, 133,
135–136
molar mass of compounds, 126–129
and the mole, 122–124
percent composition of compounds, 129–132
Quantum mechanics, 195
Radiation: electromagnetic, 192–193
Solids (cont.)
dissolving rate of, 311–312
physical properties of, 7
Solubility, 307–311
of alkali metal halides, 309
and pressure, 310
and saturated solutions, 310
and supersaturated solutions, 310
and temperature, 309
and unsaturated solutions, 310
Solubility product constant (K_{sp}), 378–381
Solutes, 306, 308–309
Solutions, 305–328. See also Solubility
colligative properties of, 320–324
common types of, 306
general properties of, 306–307
osmosis and osmotic pressure in, 325–326
saturated, 310–311
solution maps, 25
supersaturated, 311
unsaturated, 310
Solution maps, for unit conversions, 23–24
Solvents, 306, 308–309
Space shuttle, 69
Specific gravity, 36
Specific heat, 71
Spectator ions, 352
Speed, of waves, 192
Spin, 195–196
Standard conditions, 260
Standard temperature and pressure (STP), 260
Stirring, solid dissolving rate and, 312
Stock System, 106
Stoichiometry, 168–170. See also Gas stoichiometry
Stoney, G. J., 84–85
STP (standard temperature and pressure), 260
Stratosphere, 267
Strong electrolytes, 346–348
Subatomic particles, 85–87
electrons, 86
general arrangement of, 88–89
neutrons, 86–87
protons, 86
subatomic particles, 87–88
Sublevels, energy, 195–198
Sublimation, 284
Subscripts, chemical formulas and, 54–55
Substances:
definition of, 7–8
properties of, 63–64
Subtraction, significant figures in, 19–21
Sugar, 64
Sulfates, 223
Sulfur, 9, 201
Sunglasses, 400
Super-ion battery, 407
Supersaturated solutions, 311
Surface area, dissolving rate and, 311, 312
Surface tension, of liquids, 283–284
Surgical implants, oxygen in cleaning of, 52
Suslick, Kenneth, 252
Symbols (of elements):
common, 47–49
from early names, 48
Uranium, 48
Volume:
of equal masses, 35
and equilibrium, 370–371
and gas pressure, 252–256
in gas stoichiometry, 270–274
gas temperature, 256–258
and inverse PV relationship, 253
measurement of, 26
molar, 262–263
volume percent, 315
Volumetric flasks, 316
VSEPR (valence shell electron pair repulsion) model, 235–238
Wastewater, reclamation of, 299
Water, 297–299
composition of, 55–56
as compound, 53
dipole–dipole interactions in, 291
electrolysis of, 66–68
geometric shape of, 235
H^+ and OH^- concentration relationship in, 375
hydrogen bonding in, 291–292
ice and water in equilibrium, 297
ionization of, 348–349
ion product constant for, 374–376
meniscus of, 284
molecular structure of, 298–299
physical properties of, 287, 291, 297
sources of, 299
vapor pressure curves for, 321
vapor pressure-temperature curves for, 286–287
Water of crystallization, 295
Water of hydration, 295
Wavelength, 192, 193
Wave mechanics, 195
Weak electrolytes, 346–348
Weight, determination of, 24
Westphal, James A., 33
Woody plants, energy and, 72
Yield calculations, 180–181
Z
Z (atomic number), 89–91
Zeolite, 160
Zinc, hydrochloric acid and, 152
Zinc-copper voltaic cell, 404–407
Zinc-mercury cells, 405
Zinc sulfate, 103