Index

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation coefficient</td>
<td>717</td>
</tr>
<tr>
<td>Added mass</td>
<td>526</td>
</tr>
<tr>
<td>Airfoil</td>
<td>448</td>
</tr>
<tr>
<td>Joukowski</td>
<td>468</td>
</tr>
<tr>
<td>low Reynolds number</td>
<td>485</td>
</tr>
<tr>
<td>pressure distribution</td>
<td>479</td>
</tr>
<tr>
<td>camber line</td>
<td>471</td>
</tr>
<tr>
<td>camber ratio</td>
<td>471</td>
</tr>
<tr>
<td>chord</td>
<td>471</td>
</tr>
<tr>
<td>lift</td>
<td>475</td>
</tr>
<tr>
<td>thickness ratio</td>
<td>471</td>
</tr>
<tr>
<td>trailing edge</td>
<td>478</td>
</tr>
<tr>
<td>Angle of attack</td>
<td>475</td>
</tr>
<tr>
<td>Angular momentum</td>
<td>89</td>
</tr>
<tr>
<td>Asymptotic expansion</td>
<td>377</td>
</tr>
<tr>
<td>common part</td>
<td>386</td>
</tr>
<tr>
<td>composite</td>
<td>391</td>
</tr>
<tr>
<td>data correlation analysis</td>
<td>399</td>
</tr>
<tr>
<td>equal to exact</td>
<td>399</td>
</tr>
<tr>
<td>wedge flow</td>
<td>371</td>
</tr>
<tr>
<td>low Reynolds number</td>
<td></td>
</tr>
<tr>
<td>composite</td>
<td>641</td>
</tr>
<tr>
<td>matched</td>
<td>386</td>
</tr>
<tr>
<td>outer and inner</td>
<td>357</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing</td>
<td></td>
</tr>
<tr>
<td>Journal</td>
<td>660</td>
</tr>
<tr>
<td>slipper pad</td>
<td>657</td>
</tr>
<tr>
<td>Bernoulli equation</td>
<td>132, 414, 439, 503</td>
</tr>
<tr>
<td>unsteady flow</td>
<td>266, 283</td>
</tr>
<tr>
<td>Bi-harmonic function</td>
<td>614</td>
</tr>
<tr>
<td>Binomial expansion</td>
<td>376</td>
</tr>
<tr>
<td>Biot-Savart law</td>
<td>431</td>
</tr>
<tr>
<td>Blasius profile</td>
<td>570</td>
</tr>
<tr>
<td>Bond number</td>
<td>678</td>
</tr>
<tr>
<td>Boundary condition transfer</td>
<td>382</td>
</tr>
<tr>
<td>Boundary layer</td>
<td>409, 418, 533</td>
</tr>
<tr>
<td>Axisymmetric</td>
<td>573</td>
</tr>
<tr>
<td>channel entrance</td>
<td>588</td>
</tr>
<tr>
<td>coordinates</td>
<td>418</td>
</tr>
<tr>
<td>cyclone separator</td>
<td>591</td>
</tr>
<tr>
<td>entrance into cascade</td>
<td>587</td>
</tr>
<tr>
<td>erupting</td>
<td>584</td>
</tr>
<tr>
<td>Jeffrey-Hamel wedge</td>
<td>564</td>
</tr>
<tr>
<td>kinetic</td>
<td>718</td>
</tr>
<tr>
<td>Pohlhausen</td>
<td>565</td>
</tr>
<tr>
<td>pressure</td>
<td>421</td>
</tr>
<tr>
<td>pressure gradient</td>
<td>425</td>
</tr>
<tr>
<td>scales</td>
<td>419</td>
</tr>
<tr>
<td>separation</td>
<td>570</td>
</tr>
<tr>
<td>sweep-independence principle</td>
<td>595</td>
</tr>
<tr>
<td>thickness</td>
<td>536</td>
</tr>
<tr>
<td>three-dimensional</td>
<td>589</td>
</tr>
<tr>
<td>vertical velocity</td>
<td>556</td>
</tr>
<tr>
<td>Boundary value problem</td>
<td>535</td>
</tr>
<tr>
<td>Bridgman’s equation</td>
<td>165</td>
</tr>
<tr>
<td>Browian motion</td>
<td>12</td>
</tr>
<tr>
<td>Bubble</td>
<td></td>
</tr>
<tr>
<td>attached to wall</td>
<td>681</td>
</tr>
<tr>
<td>captive</td>
<td>681</td>
</tr>
<tr>
<td>Buffer layer</td>
<td>797</td>
</tr>
<tr>
<td>Bulk expansion coefficient</td>
<td>22</td>
</tr>
<tr>
<td>Bulk thermal expansion</td>
<td>199</td>
</tr>
<tr>
<td>Buoyancy force</td>
<td>209</td>
</tr>
<tr>
<td>Bursting process</td>
<td>813</td>
</tr>
<tr>
<td>Bypass transition</td>
<td>756</td>
</tr>
</tbody>
</table>
C

Capillary length scale, 677
Capillary number, 693
Capillary wave, 686
Channel flow
 downstream expansion, 588
 subcritical, 507
 supercritical, 507
Characteristic
 wave, 190
Circulation, 290, 432
 reduced, 242
Clebsch variables, 434
Coherent structures, 811
Coles’s wake function, 802
Common part
 characteristics and scaling, 393
Complex variable, 440
Complex-lamellar decomposition, 434
Composite expansion, 796
 rotary viscous coupling, 255
Compressibility factor, 23
Compressible
 liquid, 26
Computer method
 boundary layer
 Crank-Nicolson, 547
 ordinary differential equation, 245
 Streamfunction-vorticity, 333
Conformal transformation, 464
Constant stress region, 794
Contact line
 moving, 688
Continuity equation, 74
 integral form, 95
Continuum assumption, 3, 708
Control region, 6
 arbitrary, 6
 fixed, 6
 material, 6
 volume, 6
Convection velocity, 781
Convective instability, 759
Coordinate system
 inertial, 5

Coordinates
 bipolar cylindrical, 281
 conjugate cylindrical systems, 281
 streamline, 70
Correlation coefficient, 780
Corrsin-Kistler equation, 779, 804
Cosine
 direction, 29
 law of, 34
Creeping flow, 607
Cross product, 41
Curl, 46

D

D’Alembert’s paradox, 518
Defect law, 793
Density, 7
Diffusion
 velocity of, 294
 vorticity, 293
Dimension, 150
 matrix, 156
 primary, 163
 symbols, 151
Dimensional analysis
 extra assumptions, 159
 pump, 159
Dimensional constant, 163
Dip coating, 693
Dispersion relation, 497
Displacement thickness, 539
Distinguished limit, 384
Divergence, 46
Dot product, 36
Drag, 460
 bluff body wake, 518
 due to lift, 519
 hatchback, 518
 induced, 519
 nose shape, 451
 profile, 511
 slender nose shapes, 510
 tandem body, 511
 sphere with slip, 714
Drag law
 Hadamard-Rybczynski
 bubble/drop, 685
 low Reynolds number
 axisymmetric flow, 640
Drag-out flow, 693
Drop
 Sessile, 681
Dynamic similarity, 170

E
 E^2 operator, 280, 315
 Eddy diffusivity, 778
Ejection, 812
Energy
 internal, 90
 kinetic, 90
Energy equation, 90
Entropy, 16, 324
Equation of state, 19
Euler number, 450
Eulerian viewpoint, 57
Euler’s equations, 411
Expansion
 rate of, 69
Extension strain, 63, 65

F
 Falkner-Skan similarity solution, 543
Flow
 boundary layer
 axisymmetric stagnation point, 574
 beginning at infinity, 564
 Blasius, 533, 546
 boundary layer in wedge, 368
 bridge piling or biconvex airfoil, 563
 Falkner-Skan, 543
 Hiemenze, 546
 into a conical passage, 575
 Joukowsky airfoil, 558
 over flat plate, 533
 plane jet, 577
 plane wake, 579
 plate with transverse pressure gradient, 593
 Pohlhausen boundary layer, 370
 shear layer, 582
 wall under plane aperture, 567
 wall under sluice gate, 568
 wedge, 546
 closed, 737
 compressible
 nozzle, 196
 oscillating piston, 187
 over airfoil, 171, 194
 channel, 709
 Couette, 182
 integral analysis
 accelerating sphere drag, 529
 boundary layer, 540
 cart, liquid jet into, 99
 deformable particle, 100
 drag in ideal flow, 517
 oscillation sphere drag, 528
 over circular cylinder, 348
 plane jet, 576
 reducing elbow, 98
 Stokes flow, 611
 tank, filling and emptying, 96
 turbulent jet, 823
 inviscid
 annular swirling, 504
 bubble oscillation, 375
 contraction/diffuser, plane, 489
 corners, plane, 443
 doublet, 453
 ideal, 438
 jet and turning vane, 417
 over circular cylinder, 456
 over circular cylinder with circulation, 457
 over nose shape, plane, 414
 over Rankine nose, 508
 over sphere, 515
 over wavy wall, 353
 over weir, 505
 point doublet, 513
 point source, 507
 pulsating sphere, 284
 source, plane, 412
 stagnation point, 55
Flow (continued)

- stagnation point, plane, 443
- surface gravity wave, 494
- vortex pair, 310
- vortex, plane, 413
- low Reynolds number, 607
- attaching-detaching from walls, 618
- axisymmetric nozzle, 632
- axisymmetric particles, 644
- between swinging walls, 617
- Borda mouthpiece, 625
- channel with wavy walls, 626
- circular orifice in plane wall, 634
- constriction in tube, 635
- eccentric annulus tube, 631
- Hill’s spherical vortex, 683
- into or out of cone, 635
- into wedge, 623
- Jeffrey-Hamel, 623
- Marangoni liquid cylinder, 697
- over bubble /drop, 683
- Oseen, 646
- plane aperature, 625
- plane corners and walls, 616
- reservoir into or out of tube, 635
- rotating cylinder above a wall, 630
- rotating eccentric cylinders, 628
- Sampson flow, 634
- self-propelled bubble, 701
- Stokes flow in wedge, 367
- Stokes over cylinder, 642
- streaming over sphere, 636
- Taylor’s scraper, 617
- thermocapillary bubble, 701
- thermocapillary liquid cylinder, 697
- within bubble /drop, 683

lubrication approximation

- channel, 709
- channel of varying area, 650
- channel with porous wall, 653
- dip coating ; drag out, 693
- Hele-Shaw, 664
- journal bearing, 661
- slipper pad, 657
- squeeze film, 659

micro

- Couette with slip, 714
- gas over sphere, 687
- gas; Couette free molecular, 719
- gas; Couette with slip, 720
- gas; Poiseuille free molecular, 722
- liquid slip, 732
- liquid; channels, 728
- over sphere with slip, 714
- Poiseuille with slip, 714
- tube flow with slip, 684

stagnation point

- Howarth’s, 598

open, 737

viscous

- over sphere, 153
- adiabatic walls, 199
- asymptotic suction, 227
- bubble oscillation, 374
- Burgers vortex, 251
- capillary wave, 686
- cascade of plates, 331
- Couette, 136
- Couette-Poiseuille, 138, 177
- decay of ideal vortex, 241
- double falling film, 139
- Hiemenz, 245
- Hill’s spherical vortex, 120, 314
- hydrodynamic entrance, 128
- in a plane wedge, 362
- Jeffrey-Hamel, 362
- linear shear, 61
- Marangoni film, 696
- Marangoni stagnation point, 698
- oscillating stream above a wall, 231
- Oseen vortex, 243
- over circular cylinder, 320
- over sphere, 357
- plane channel, 128
- Poiseuille channel, 128
- Rayleigh flat plate, 143
- rotary viscous coupling, 142, 253
- slot with porous walls, 272
- slot, steady and oscillating pressure gradient, 236
- stagnation point, plane, 245
Stokes sphere, 120
Stokes’s flow transient, 234
Stokes’s oscillating plate, 228
Sullivan’s vortex, 253
Taylor vortex, 243
trailing vortex, 244
tube, circular pipe, 135
tube, elliptic cross section, 222
tube, rectangular cross section, 224
tube, various cross section, 221
von Karman viscous pump, 257
Fluctuations, 709
Force, surface, 79
Fourier heat conduction, 123
Free molecular flow, 717
Friction coefficient, Blasius, 537
Friction factor, 135
Friction law, logarithmic, 795
Friction velocity, 790
Froude number, 201, 507

G

Galilean transformation, 5
Gas, ideal, 22
Gases, kinetic theory, 715
Gauge function, 377
Gauss integral formula, 48
Gibbs-Duhem equation, 20
Gortler number, 770
Gradient, 46
Group velocity, 497

H

Hairpin vortex, 812
Head
elevation, 414
pressure, 414
total, 414
velocity, 414
Head loss, 134
Heat flux, 92
Helmholtz decomposition, 430
Helmholtz’s vorticity laws, 306
Hodograph plane, 492
Horseshoe vortex, 603, 812
Hydrodynamic entrance, 330

I

Ideal flow, 413
plane, 438
Incompressible flow, 1
adiabatic walls, 198, 215
constant temperature walls, 213
unsteady invariance, 211
Incompressible fluid, 217
Incompressible substance, 25
Index
dummy, 30
free, 30
summation, 30
Inertial subrange, 785
Inner product, 36
Instability
algebraic growth, 762
capillary jet, 769
Couette flow, 761
Crow, 768
curved streamlines, 763
Gortler, 765
Poiseuille flow, 761
Rayleigh-Taylor, 765
Integral length scale, 781
Interface, 10, 669
contact line, 675
jump equations, 106
kinematic condition, 495, 673
mass balance, 671
mean curvature, 670, 674
momentum balance, 633
normal vector, 670
Interference, low Reynolds number,
between two spheres, 647
Internal energy, 9
Inviscid flow, 409
Irrotational, 59
Irrotational flow, 413
Isothermal compressibility, 22, 199
Isothermal compressibility, 22
<table>
<thead>
<tr>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet</td>
<td>Mach number, 188, 202, 205</td>
</tr>
<tr>
<td></td>
<td>Magnus effect, 462</td>
</tr>
<tr>
<td></td>
<td>Mangler’s transformation, 573</td>
</tr>
<tr>
<td></td>
<td>Marangoni flow, 695</td>
</tr>
<tr>
<td></td>
<td>Mass, conservation of, 74</td>
</tr>
<tr>
<td></td>
<td>Matching, boundary layer and inviscid flow, 425</td>
</tr>
<tr>
<td></td>
<td>Matching process, 386</td>
</tr>
<tr>
<td></td>
<td>Material derivative, 59</td>
</tr>
<tr>
<td></td>
<td>Material point, 9</td>
</tr>
<tr>
<td></td>
<td>Mean free path, 115</td>
</tr>
<tr>
<td></td>
<td>Mean free path length, 716</td>
</tr>
<tr>
<td></td>
<td>Mechanical energy equation, 92</td>
</tr>
<tr>
<td></td>
<td>Mechanical energy equation, integral form, 104, 132</td>
</tr>
<tr>
<td></td>
<td>Meniscus rise</td>
</tr>
<tr>
<td></td>
<td>in capillary tube, 679</td>
</tr>
<tr>
<td></td>
<td>in plane channel, 677</td>
</tr>
<tr>
<td></td>
<td>near a plane wall, 676</td>
</tr>
<tr>
<td></td>
<td>outside a rod, 679</td>
</tr>
<tr>
<td></td>
<td>Micro flows, 706</td>
</tr>
<tr>
<td></td>
<td>Moffatt vortices, 619</td>
</tr>
<tr>
<td></td>
<td>Molecular collision frequency, 717</td>
</tr>
<tr>
<td></td>
<td>Molecular collision time, 717</td>
</tr>
<tr>
<td></td>
<td>Molecular spacing, 709</td>
</tr>
<tr>
<td></td>
<td>Molecular velocity, 716</td>
</tr>
<tr>
<td></td>
<td>Momentum equation, integral form, 97</td>
</tr>
<tr>
<td></td>
<td>Momentum equation, 78</td>
</tr>
<tr>
<td></td>
<td>Momentum thickness, 350, 540</td>
</tr>
<tr>
<td></td>
<td>Morkovin diagram, 756</td>
</tr>
<tr>
<td>K</td>
<td>N</td>
</tr>
<tr>
<td>Kelvin’s circulation theorem, 307</td>
<td>Navier-Stokes equations, 111, 125</td>
</tr>
<tr>
<td>Kinetic energy, inviscid flow, 516</td>
<td>Navier-Stokes equations, parabolized, 588</td>
</tr>
<tr>
<td>Kinetic energy coefficient, 133</td>
<td>Newton’s law, 88</td>
</tr>
<tr>
<td>Kinetic energy equation, 92</td>
<td>Newton’s viscosity law, 111</td>
</tr>
<tr>
<td>Kinetic theory, 115</td>
<td>Nodal points, 602</td>
</tr>
<tr>
<td>Knudsen layer, 718</td>
<td>Nondimensional variable, 153, 175</td>
</tr>
<tr>
<td>Knudsen number, 717</td>
<td>Non-Newtonian liquid, 118</td>
</tr>
<tr>
<td>Knudsen’s minimum, 725</td>
<td>Normal modes, 738</td>
</tr>
<tr>
<td>Kolmogorov, spectrum law, 397</td>
<td></td>
</tr>
<tr>
<td>Kolmogrov scales, 784</td>
<td></td>
</tr>
<tr>
<td>Kronecker delta, 33</td>
<td></td>
</tr>
<tr>
<td>Kutta condition, 473</td>
<td></td>
</tr>
<tr>
<td>Kutta-Joukowski law, 460, 520</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lagrangian viewpoint, 54</td>
<td></td>
</tr>
<tr>
<td>Lamb surface, 416</td>
<td></td>
</tr>
<tr>
<td>Law of the wake, 796, 802</td>
<td></td>
</tr>
<tr>
<td>Law of the wall, 794</td>
<td></td>
</tr>
<tr>
<td>Leibnitz’s theorem, 51</td>
<td></td>
</tr>
<tr>
<td>Lennard-Jones potential, 707</td>
<td></td>
</tr>
<tr>
<td>Lennard-Jones time scale, 707</td>
<td></td>
</tr>
<tr>
<td>Lift and drag, Blasius theorem, 461</td>
<td></td>
</tr>
<tr>
<td>Lift coefficient, 481</td>
<td></td>
</tr>
<tr>
<td>Lift force, 460</td>
<td></td>
</tr>
<tr>
<td>Lifting-line theory, 524</td>
<td></td>
</tr>
<tr>
<td>Liquid layers near walls, 730</td>
<td></td>
</tr>
<tr>
<td>Log law, 797</td>
<td></td>
</tr>
<tr>
<td>Logarithmic friction law, 795</td>
<td></td>
</tr>
<tr>
<td>Lubrication approximation, 650</td>
<td></td>
</tr>
</tbody>
</table>
Normal stress coefficient, low Reynolds number, 623
No-slip boundary condition, 418
No-slip condition, 11, 120

O
Order symbol, 378
Orr-Sommerfeld equation, 746
Oseen flow, 646
Overlap region, characteristics and scaling, 393

P
Parallel flow, viscous instability, 749
Particle
 acceleration, 55
 fluid, 9
Particle path, 9, 55
Particle position, 54
Perturbation, singular
 Friedrich’s problem, 356
 Lagerstrom’s problems, 403
Pi Theorem, 155, 167
Point-of-inflection criterion
 Fjortof’s theorem, 748
 Rayleigh’s theorem, 748
Potential
 complex, 440
 vector, 431, 503
 velocity, 413, 439
Potential flow, 413
Potentials, Monge, 429
Prandtl number, 125, 202
Pressure
 coefficient, 450, 510
 kinetic, 208
 lubrication scale, 651
 mechanical, 83, 206
 pseudo, 212
 reduced, 23
 reference, 206
 thermodynamic, 83
 lubrication scale, 662
Pressure coefficient, low Reynolds number, 590, 623
Pressure force, 209
Pressure scale
 hydrostatic, 208
 inertial, 202
 viscous, 608
Principal axes, 44
Principal directions, 44
Principal values, 44

R
Rate of deformation tensor, 63
Rayleigh’s argument, 409
Rayleigh’s circulation criterion, 763
Reduced circulation, 763
Relative dispersion, 708
Reversible process, 15
Reynolds condition, 661
Reynolds decomposition, 776
Reynolds lubrication equation, 655
Reynolds number, 157, 202, 409
Reynolds number, critical (sphere), 357
Reynolds ridge, 695
Reynolds stress, 777
Richardson effect, 234
Rossby number, 321
Rotta-Clauser thickness, 801

S
Saffman-Taylor instability, 666
Scalar product, 36
Second law of thermodynamics, 94
Secondary instability, 756
Separation bubble, 453, 485
Shear strain, 63, 65
Similarity solution, 145
Similarity variable, 535
Singular perturbation, 253
Slip flow
 hydrophobic, 733
 superhydropic, 734
Slip law
 gas, 717
 liquid, 732
Slip length, 712
Slip velocity, 712
Sommerfeld transformation, 626
Sound, speed of, 154, 189
Squeeze-film lubrication, 659
Squire’s theorem, 745
Stability
 Blasius boundary layer, 749
 Blasius boundary layer experiments,
 752
 Falkner-Skan boundary layer, 750
 inviscid, 739
 inviscid shear layer, 739
 Kelvin-Helmholtz, 739
 linear, 737
 neutral, 739
 parallel inviscid flows, 747
 parallel viscous flows, 744
 spatial, 739
 temporal, 739
 viscous shear layer, 750
Stagnation point, 478
 Marangoni, 698
Stockmayer potential, 708
Stokes drag law, 640
Stokes flow, 607
 global force balance, 611
Stokes integral formula, 48
Stokeslet, 638
Stokes’s assumption, 84, 112
Strain rate tensor, 61
Strain vector, 63, 295
Streaks, 812
Streamfunction, 266, 439, 613
 axisymmetric flow, 282
 plane flow, 269
Streamline, 58, 266
Streamsurfaces, three dimensional,
 274
Stress tensor, 79
symmetry, 89
viscous, 113
Strouhal number, 351
Substantial derivative, 59
Surface streamlines, 601
Surface tension, 673
Swarz-Christoffel transformation, 487
Sweep, 812
Swift-Steiber condition, 661

T

Taylor Couette Flow Instability, 765
Taylor microscale, 788
Taylor number, 765
Taylor’s convection hypothesis, 781
Temperature, 16
 reduced, 23
 reference, 207
Temperature scale, adiabatic wall,
 202
Tensor
 alternating unit, 33
 antisymmetric, 37
 definition of, 32, 42
 substitution, 33
 symmetric, 37
Thermal conductivity, 124
Thermal energy equation, 93
Thermocapillary flow, 695
Thermocapillary velocity scale, 696
Thermodynamic, fundamental equation,
 18
Thermodynamic process, 15
Thermodynamic property, 15
 extensive, 16
 intensive, 15
Tollmien-Schlichting waves, 749
Transient growth, 761
Transition
 free shear layers, 759
 Wall layers, 756
Turbulent
 channel flow, 789
 free shear layers, 817
 jet, 822
wall layer, 789
 common parts, 795
 inner expansion, 794
 matching, 794
 outer expansion, 791
Turbulent boundary layer, equilibrium, 802
Turbulent boundary layer data, mean velocity, 801
Turbulent drag reduction, 773
Turbulent flow, 772
 characteristics, 773
 types of, 772
Turbulent kinetic energy, 782
Turbulent spot, 759
Turbulent structures, 811
Turbulent wall layer, log law, 399
Turbulent wall layer data
 mean velocity, 797
 Reynolds stress, 799
 velocity fluctuations, 808
 vorticity fluctuations
 inner region, 805
 outer region, 806
 wall stress fluctuations, 807

V
Van Dyke’s matching rule, 387
Vector, definition of, 32, 42
Vector, dual, 39
Vector potential, 277, 614
Vector product, 41
Velocity
 complex, 440
 mass averaged, 9
 molar averaged, 9
 phase, 739
Velocity potential, 266, 283, 439
Velocity profile overshoot, 596
Viscosity
 gas, 114
 Newton’s law, 113
Viscous adhesion, 659
Viscous diffusion, 409, 609
 wedge flow, 369
Viscous diffusion distance, 147, 227, 230
Viscous diffusion length, 261, 409
Viscous dissipation, 94, 783
 temperature scale, 186
Viscous fingering, 667
Viscous stress, 83
Viscous sublayer, 797
Von Karman constant, 795
Von Karman momentum integral, 540
Von Karman vortex street, 351
Von Karman-Pohlhausen approximate method, 541
Vortex, 308
 Batchelor q-, 309
 breakdown, 317
 circular line ring, 312
 Frankel-Norbury ring, 314
 Grabowski-Berger, 309
 hairpin, 756
 Hill’s spherical, 314
 horseshoe, 327
 lambda, 756
 pairing, 761
 Rankine, 308
 self-propelled, 311
 Sullivan’s, 324
 wall interaction, 311
 wing tip, 1
Vortex line, 290, 431
 reconnection, 317
 straining of, 295
Vortex packets, 815
Vortex pairing, 818
Vortex sheet, 431
Vortex tube, 432
Vorticity, 62, 66, 278, 289
 development
 entrance to channel, 301
 over airfoil, 327
 over flat plate, 305
Vorticity equation, 292
Vorticity production, 296

W
Wall streaks, 812
Wave
Wave (continued)
capillary, 687
shock, 193
speed, 497
Wave speed, 739
Wavenumber, 738
Waves
compressible, 189
surface gravity, 494
Wave vector, 738

Wing tip vortex, 521
Winglets, 525
Work, 91
boundary pressure, 105, 133
flow, 105, 128
shaft, 105, 133

Y

Young-Laplace equation, 675