INDEX

ab initio model, 558–560
absorbance flattening, 514
adiabatic approximation, of TDDFT, 601
alleno-acetylenic macrocycle treatment, 652–655
angular momentum operator, 14
anisotropy of circular dichroism (ACD), 527
apparent surface charges (ASC), 730
Apple-II undulators, 464
atomic axial tensor, 710
atomic polar tensor, 704, 709
Baranova model, 434, 436, 438
Barnett effect, 453
Beer–Lambert law, 42, 43, 71, 512, 514
biaxial crystals and bigyrotropy, 461–462
binaphthol molecule, 761, 764
BioCARS, 360–361
biological homochirality, 9
Biot, Jean-Baptiste, 3
Boltzmann averaging technique, 687, 689–690
Born–Oppenheimer approximation, 709, 737
camphor dimers, 427–428
carbon 1s core electron PECD
carvone, 420–423
fenchone, 418–420
carvone, 420–423
cavity ring-down polarimetry (CRDP), 292–293, 293, 295, 298, 687
cavity ring-down spectroscopy (CRDS), 293
cell pathlength calibration, 56
charge-coupled device (CCD) detectors, 166
cholesteric liquid crystals (CLC), 449
circular birefringence (CB), 93, 101, 331, 339
circular dichrographs, 7
circular dichroism (CD), 7, 8, 21–24, 339. See also electronic transitions, circular dichroism measurement of; See also individual entries
assessing contribution of macroscopic anisotropies to spectra, 102–103
cast film, of bovine serum albumin, 104, 106
diffuse reflectance (DRCD), 107–110
electronic, and circularly polarized luminescence, 223–224
dynamic coupling, 226–228
low-temperature measurements, 230–232
multiplet structures in Yb$^{3+}$ complexes, 229–230
static coupling, 224–226
total and relative intensity of chiroptical properties, 228–229
and extinction, 335–336
measurement, 127–129
multichannel (MC) method, 110
PEM-based picosecond, and MCD, 198
of samples oriented by photoselection, 190
true measurement method, 99–100
ture spectra of achiral films, 101–102
ultrafast ellipsometric, 199
circular differential Raman scattering, 8
circular intensity differential (CID), 462
circularly polarized light. See circularly polarized luminescence
circularly polarized luminescence (CPL), 10, 80, 337, 409, 440
as chirral structural probe, 81–83
electronic circular dichroism, 223–224
dynamic coupling, 226–228
low-temperature measurements, 230–232
multiplet structures in Yb$^{3+}$ complexes, 229–230
static coupling, 224–226
total and relative intensity of chiroptical properties, 228–229
from Ln(III) complexes with chiral ligands, 85–86
luminescence selectivity, 81
measurement, 71–75
artifacts in, 79–80
as probe of specific molecular chirality, 84–85
from racemic mixtures, 83–84
spectroscopy, 66–69
standards for, 77–79
circular polarization modulation and analysis, 167
exciting light, 167
scattered light, 168

circular polarization scrambling, 170–171
combination with linear polarization scrambling, 171–173

classical polarizability theory, See DeVoe theory
Clough, Lutz, and Jirgensons (CLJ) effect, 619–620

coherent anti-Stokes Raman scattering (CARS), 359, 360
collinear scattering, 150, 158–159
fiber optics, 159
sample cells and sample size, 160–163
scattering zone and light collection, 159–160
complex gyration tensor, 459–461
complex polarization propagator (CPP), 485
configuration interaction (CI), 5, 8, 678–679
configuration interaction singles sum-over-states (CIS-SOS), 364–365
conformationally flexible systems, 661–668, 687
continuum multiple-scattering (CMS-Xα) method, 420
COSMO (COnductorlike Screening MOdel) method, 731, 736, 739
Couette flow cells, 496, 509, 512, 516
coupled cluster linear response theory, 682–684
coupled cluster theory
history, 677
fundamentals, 677–681
cross-polarization detection (CPD) technique, 209–210
crystal field splitting (CFS), 222
crystals, chiroptical imaging of, 325–327
artifacts, 340–342
circular dichroism and extinction, 335–336
complete versus incomplete polarimeters, 327–330
differential polarization imaging, 327
Mueller matrix microscopy, 337–340
nanoscale, 337
optical rotation, 331–334
outlook, 342–343
Curie symmetry, 458
cyclophane derivatives, theoretical treatment, 668–670
cytoskeletal proteins, linear dichroism of, 501–502
Czerny–Turner monochromator, 46
damping, 13
Davidson diagonalization techniques, 713
decadic absorbance, 39
degree of chiral excess (DCE), 377, 379, 393, 395, 397, 398
density functional theory (DFT), 6, 298, 365, 647–650, 711
density operator, 13
DeVoe theory, 554–558
calculations employing, 585–590
dielectric constant, 10
difference frequency generation, 25
differential intensity measurement method, 208
differential photon counter (DPC), 73–75
differential polarization imaging, 327
diffraction anomalous near-edge structure (DANES), 475, 476
diffuse reflectance CD (DRCD)
first CD measurement of 1:1 BQ–PYR complex, 108–110
specular component, 107–108
dipole length formula, 544, 548, 550, 644
dipole strength, 7
dipole velocity form, 548, 550, 644
Tinoco equation derivation in, 569–576
Dirac, P. A. M., 4
discrete reaction field (DFR), 736
DNA, linear dichroism of, 496–498
DNA-bound ligands, linear dichroism of, 498–501
dual circular polarization (DCP), 149
dual lens light collection, 168–169
and sample considerations, 157–158
dynamic coupling, 226–228
Einstein, Albert, 4
Einstein–deHaas effect, 453
electric dipole interactions, 16
electric field–electric dipole interaction, 15
electric field gradient–electric quadrupole interaction, 15
electric-field-induced sum-frequency generation, 356–357
electric polarizability tensor, 10
electric quadrupole, 15, 24
electromagnet-permanent magnet hybrid undulator (EMPHU), 464
electron configuration, 5
electronic circular dichroism (ECD). See also independent systems theory, for electronic circular dichroism prediction; theoretical electronic circular dichroism spectroscopy and circularly polarized luminescence, 223–224
metal complexes and metal clusters, 620–621
representative examples and benchmark computations, 621–629
spectral assignments and analyses, 629–635 and ORD calculations
exact wavefunctions and sum-over-states equations, 594–596
general computational considerations, 606–608
lineshapes, ORD patterns Kramers–Kronig transforms, 605–606
origin dependence and GIAOs, 604–605
response methods in approximate wavefunction theories and TDDFT, 597–600
TDDFT and molecular orbital linear response theory for electronic chiroptical properties, 600–604 and ORD calculations, for organic molecules, 608–609
chiral sectors in molecules from ab initio perspective, 618–620
ECD spectra, 609–611
molecular vibrational effects, 616–618
optical rotatory dispersion, 613–615
single-wavelength optical rotation calculations, 611–613
solvation effects on natural optical rotation and, 732–733
general aspects, 733–734
optical activity of metal complexes, 736
optical activity of organic molecules, 735–736
optical activity of peptides and amino acids, 734–735
optical rotation, 732
electronics and computer systems
alternate approach to CD signal extraction, 52
circular dichroism measurement, 51
optical beam power conversion to voltage, 50–51
spectrometer computer systems, 52–53
electronic transitions, circular dichroism measurement of, 37 absorbance, 38–40 conceptual CD spectrometer components, 44 classes based on photoelastic modulators, 44–49 photoelastic modulator operation, 49–50 electronics and computer systems alternate approach to CD signal extraction, 52 circular dichroism measurement, 51 optical beam power conversion to voltage, 50–51 spectrometer computer systems, 52–53 ellipticity, 41–42 intrinsic absorption and, 42–43 CD-absorbance anisotropy ratio and multicomponent spectra, 43 measurement, 40–41, 51 operations performance and potential artifacts, 57–61 spectrometer calibrations, 55–56 optical components selection, 54–55 simultaneous measurement of absorption, 53–54 electro-optical absorption (EOA) spectroscopy, 525 discussion, 536–537

incident circular polarization Raman optical activity (ICP-ROA), 737
indefinite integrations, 12
independent systems theory, for electronic circular dichroism prediction, 543
applications, 558–560
DeVoe theory, 554–558
matrix method, 549–554
software, 560–561
Tinoco theory, 544–549
index of refraction, 10
induced electric polarization, 16–17
induced emission, 4–5
infrared electronic circular dichroism (IR-ECD), 115
infrared vibrational optical activity
advanced methods for FT-VCD measurement, 134
dual polarization modulation FT-VCD, 135–138
dual source FT-VCD, 138–139
rotating achromatic half-wave plate, 139–141
rotating sample cell, 141
circular dichroism measurement, 127–129
forms of, 116–120
Fourier Transform instrumentation
dispersive and Fourier Transform VCD, 134
FT-VCD and FT-VCB measurement, 131–133
general principles, 130–131
infrared VOA and VA spectra of alpha pinene, 133
overview of, 120–123
sampling methods for
dispersed solids, 142–143
films, 143–144
Stokes vectors and Mueller matrices, 123–127
vibrational circular birefringence (VCB) measurement, 129–130
inhomogeneous and anisotropic samples and photodegradation, 61
in situ measurement of chirality of molecules and molecular assembly, 373–376
perspectives and future directions, 399–401
SHG-LD and SFG-LD application
circularity of Langmuir molecular assembly measured with SHG-LD, 388–389, 391–398
chiral spectra and chirality of chiral liquid surface with SFG-LD, 394–399
theory and formalism of SHG-LD and SFG-LD
experimental methods for SFG-LD determination of chiral and achiral elements, 386–388
general issues, 376
selective probe of structural chirality by chiral SFG, 385–386
SFG-LD for chiral surfaces, 383–385
SHG-LD for chiral surface, 378–380
SHG-LD, SFG-LD, and degree of chiral excess, 376–377
symmetry relationships, 380–382
integral equation formalism polarizable continuum (IEF-PCM) model, 730, 731, 735, 736, 741
intrinsic absorption, 42–43
CD-absorbance anisotropy ratio and multicomponent spectra, 43
isotropic averaging, 23, 24
isotropic tensors, 366–367
Jacob’s Ladder, 648–649
Jones matrix, 330
Kohn–Sham (KS) density functional theorem (KS-DFT), 648
Kohn–Sham formalism, 713
Kramers–Kronig relationship, 8, 101, 289, 605–606
lanthanide, 221
and catalysts, 242–243
coupling of electronic and vibrational states and VCD enhancement, 232–234
electronic circular dichroism and circularly polarized luminescence, 223–224
dynamic coupling, 226–228
low-temperature measurements, 230–232
multiplet structures in Yb³⁺ complexes, 229–230
static coupling, 224–226
total and relative intensity of chiroptical properties, 228–229
f shell, 221–223
Ln¹⁺ CPL, 243
Ln¹⁺ in absolute configuration determination with no interferences, 238–239
magnetic resonance imaging (MRI), 239–242
solid state studies and Ln (ODA), 237–238
as spectroscopic probes for Ca²⁺ binding biomolecules, 234–237
ligand-to-metal charge transfer (LMCT), 620, 622, 625, 633
light, interaction with molecules, 3
chirality and magnetism, 29–31
circular dichroism (CD) and optical rotatory dispersion (ORD), 21–24
four-wave mixing, 25
historical perspective
chiroptical properties and early interpretations, 6–9
nature of light, 3–5
quantum chemistry in early stages, 5–6
magnetic circular dichroism (MCD), 26–27
magnetochiral dichroism (MChD), 27–29
semiclassical theory elements
classical description of light, 9–11
induced electric polarization, 16–17
interaction with radiation, 13–15
perturbation theory elements, 11–13
rotational average evaluation, 19–20
transition from initial state to final state, 20–21
sum and difference frequency generation, 24–25
two-photon CD and Raman optical activity, 26
linear birefringence (LB), 100, 101
presence of, 103–104
linear dichroism (LD), 99–100, 101, 493. See also in situ measurement of chirality of molecules and molecular assembly
absorbance flattening, 514
baselines, wavelength ranges and, 512–513
of cytoskeletal proteins, 501–502
nonlinear optical spectroscopy, of chiral molecules (Continued) density functional theory (DFT), 365

one-electron model, 7
one-photon transition, 20
spectrograph optimization, 153–156
signal detectors, 166–167
solvation effects and, 737–738
vibrational, 115
Raman-type four-wave mixing, 16
Rayleigh–Schrödinger perturbation theory, 353
resonant inelastic X-ray scattering (RIXS), 466
resonant Raman scattering (RRS), 476
coupled cluster linear response theory, 681–682
equation-of-motion coupled cluster, 684–685
origin invariance, 685–686
Richardson–Dushman expression, for current, 58–59
right-angle scattering, 156
beam waist considerations, 156–157
dual lens light collection and sample considerations, 157–158
robustness and computational parameter effects on VCD spectra, 755–758
criteria, 754–755
and ξ-angle distribution in chiral molecules, 749–752
and ξ-dependence on computational parameters, 752–754
and VCD prediction reliability, 759–760
theory, 748–749
rotational strength, 7, 22
rotational average evaluation, 19–20
scalar susceptibility, 19
scanning high-accuracy universal polarimeter (S-HAUP), 331–332, 333–334, 341
scattered circular polarization (SCP), 149, 167
collinear scattering, 150
comparison with DCP, scattering cross sections, 151
scattered circular polarization Raman optical activity (SCP-ROA), 737–738
Schrödinger equation, 8, 11, 544, 679, 682
second-harmonic generation (SHG), 348, 361–363
and incoherent processes, 361
linear dichroism (LD). See in situ measurement of chirality of molecules and molecular assembly
sector rules, 8
self-consistent field (SCF) method, 6, 8
self-consistent isodensity polarizable continuum (SCI-PCM) model, 731, 735
self-consistent optimization procedure, 706
self-interaction correction (SIC), 485
self-interaction error (SIE), 649
signal-to-noise ratio and optimum absorbance, 57–58
sign-change mechanism, 772–773, 776, 779
single-grating monochromator, 44, 45
single polarization angle (SPA), 394
site-specific linear dichroism (SSLD), 504–505
Slater determinants, 5, 677–678, 680
solid-state chiroptical spectrophotometry, 91–93
applications
assessing contribution of macroscopic anisotropies to CD spectra, 102–103
cast film CD of bovine serum albumin, 104, 106
diffuse reflectance CD (DRCD), 107–110
Kramers–Kronig relationship, 101
LB signal presence, 103–104
ture CB measurement method, 100
ture CD measurement method, 99–100
ture CD spectra of achiral films, 101–102
multichannel (MC) CD method, 110
new apparatus development
dual-purpose transmittance CD and diffuse reflectance CD spectrophotometers (UCS-2 and UCS-3), 98–99
universal chiroptical spectrophotometer UCS-1, 97–98
theoretical background, 93–96
solvation models, 729–730
effects on electronic circular dichroism and natural optical rotation, 732
circular dichroism, 732–733
general aspects, 733–734
optical activity of metal complexes, 736
optical activity of organic molecules, 735–736
optical activity of peptides and amino acids, 734–735
optical rotation, 732
effects on vibrational optical activity
amino acids and peptides, 739–740
general aspects, 738–739
of organic molecules, 740–741
molecular dynamics, 731–732
polarizable continuum model (PCM), 730–732
Raman optical activity and, 737–738
supermolecular approach, 731
vibrational circular dichroism and, 736–737
spatial dispersion, 458–459
spatial reflection, 8
spectrometer calibrations, 55–56
spectrometer computer systems, 52–53
spin component scaling-configuration interaction singles with perturbative doubles correction (SCS-CIS (D), 646, 658, 659
spontaneous emission, 4
Stark effect, 531
static coupling, 224–226
static magnetic field, 26
steady-state terms, 12
stimulated Raman scattering (SRS), 359
Stokes–Mueller calculus, 327
Stokes–Mueller matrix method, 93–94
and circular dichroism measurement, 127–129
and representation of intensities, 123–127
and vibrational circular birefringence (VCB) measurement, 129–130
Stokes–Poincaré parameters, 457
stray light and detector dark current, 58–61
strong orbital paramagnetism, 29
sum-frequency generation (SFG), 16, 18, 24–25, 348, 352–357
electric-field-induced, 356–357
experiments, 354–356
linear dichroism (LD). See in situ measurement of chirality of molecules and molecular assembly
sum-over-states equation, 595, 596, 704, 709, 710
synchrotron radiation sources, 46, 48, 59
theoretical electronic circular dichroism spectroscopy, 643–645
density functional theory, 647–650
examples
 approaching a supramolecular organic capsule with
 TD-DFT, 659–661
 conformationally flexible systems treatment, 661–668
 exciton coupling in merocyanine-dimer aggregate, 655–659
 large alleno-acetylenic macrocycle treatment, 652–655
 pharmaceutical relevant molecule absolute configuration
 determination, 652
 theoretical treatment of experimentally investigated
 cyclophane derivatives, 678–680
 recommendations for ECD spectra calculation, 650–652
 semiempirical methods, 647
 wavefunction-based methods, 645–647
 third-order nonlinear chiroptics, 358
 coherent Raman optical activity, 359–360
 nonlinear optical activity, 358–359
 time correlation function theory, 205–208
time-dependent density functional theory (TDDFT), 509, 594,
 608–610, 612, 614, 622–630, 632, 634, 635
 adiabatic approximation of, 601
 and molecular orbital linear response theory for electronic
 chiroroptical properties, 600–604
 response methods in approximate wavefunction theories and,
 597–600
 time-dependent Hartree–Fock (TD-HF) approximation, 365,
 646–647
time-domain IR optical activity free induction decay, 211–212
time-resolved circular dichroism (TRCD). See nanosecond
 time-resolved natural and magnetic chiroptical
 spectroscopies
Tinoco theory, 544–549
calculations with, 575–576
transition density cube (TDC), 551
transition-density-fragment interaction (TDFI), 551–552
transition probability per unit time, 20, 26, 27
transversality condition, 13
tris(ethylenediaminato)cobalt(III) complex [Co(en)3]+, 766
Tröger’s base, 749, 751, 759
tubulin polymerization and depolymerization, 505
twin polarization angle (TPA), 386, 387, 394, 395, 397
two-photon absorption, 20
two-photon CD and Raman optical activity, 26
unmodified molecular orbitals (UMOs), 706
valence shell PECID
 camphor dimers, 427–428
 endo-borneol, 426–427
 glycidol, 423–426
 variable temperature (VT), 230
 vectorial field part, 19
 vector potential, 15
 velocity map imaging (VMI), 415, 416, 417
vibrational circular birefringence (VCB), 116, 119, 120
measurement, 129–130
vibrational circular dichroism (VCD), 115, 116, 120, 121–123,
 129–130, 137, 143–144, 204, 699–711, 747–748
 ab initio calculation of, 717–719
 enhancement, and coupling of electronic and vibrational
 states, 232–234
 molecular complex formation effects in spectra, 760
 chirality transfer, 778, 780
 conformational population of solute perturbation, 761–762
 electronic structure perturbation, 766–776
 normal mode perturbation, 762–766
 and robustness
 computational parameter effects on VCD spectra, 755–758
 criteria, 754–755
 χ-angle distribution in chiral molecules, 749–752
 χ-dependence on computational parameters, 752–754
 theory, 748–749
 VCD prediction reliability, 759–760
 solvation effects and, 736–737
vibrational optical activity (VOA), 8, 115–116. See also
 infrared vibrational optical activity
definition of, 116
vibrational optical rotatory dispersion (VORD), 116, 119
 virtual enantiomer, 170
wave-mixing energy level diagram, 354, 360
xenon arcs, 44, 45, 59
 X-ray absorption near-edge structure (XANES), 458, 460, 468,
 475, 476, 478, 479
X-ray absorption spectroscopy (XAS), 458
 X-ray circular intensity differentials, 462–464
 X-ray crystal optics effect, 462
X-ray detected optical activity (XDOA), 457
 gyrotropic dichroism in REXS and RIXS, 474–477
 CID in RIXS regime, 475–477
 vector part of OA in zincite, 474–475
instrumentation and methods
detection modes, 466–468
 X-ray source and optics, 464–466
 operators and sum-rules, 481–483
 phenomenological bases
 biaxial crystals and bigyrotropy, 461–462
 complex gyration tensor, 459–461
 spatial dispersion, 458–459
 X-ray circular intensity differentials, 462–464
 X-ray dichroism, 457–458
 unifying theories and first principles simulations, 480–481
 ab initio calculations, 483–486
 sum-rules and effective XDOA operators, 481–483
XNCD experiments, 468
 biaxial crystals, 471–473
 soft XNCD, 473–474
 uniaxial crystals, 468–471
 X-ray magnetochiral dichroism, 477–480
 X-ray dichroisms, 457–458
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray excited optical luminescence (XEOL), 467</td>
</tr>
<tr>
<td>X-ray fluorescence photons, 466</td>
</tr>
<tr>
<td>X-ray linear dichroism (XLD), 466</td>
</tr>
<tr>
<td>X-ray magnetic circular dichroism (XMCD), 460, 465, 468, 480</td>
</tr>
<tr>
<td>X-ray ME linear dichroism (XME LD), 461</td>
</tr>
<tr>
<td>X-ray natural circular dichroism (XNCD), 458–459, 461, 462, 466, 480, 482–483, 486</td>
</tr>
</tbody>
</table>