Contents

Preface

1 **Introduction**

2 **History, Definition, and Diagnosis of the Metabolic Syndrome**
 Historical Aspects of the Metabolic Syndrome
 Definition and Diagnosis of the Metabolic Syndrome Suggested by Various Groups and Associations

3 **Insulin Resistance in the Metabolic Syndrome**
 Is Insulin Resistance Responsible for the Metabolic Syndrome?
 Exercise and Insulin Resistance
 Anti-inflammatory Nature of Exercise

4 **Is It Necessary to Redefine the Metabolic Syndrome?**
 Criteria

5 **Is Insulin Resistance a Disorder of the Brain?**
 Parasympathetic and Sympathetic Tones and Insulin Resistance
 Hypothalamo-pituitary-adrenal Pathway and Parasympathetic and Sympathetic System, and GLUT-4 and Hypothalamic Neuropeptide Y in Insulin Resistance, Obesity, and the Metabolic Syndrome
 Interaction(s) among NPY, Leptin, GLUT-4, Melanocortin, and Insulin and Its Relevance to Obesity, Insulin Resistance, and the Metabolic Syndrome
 Insulin and Brain
 Insulin and Brain Monoamines
 Obesity and Basal Energy Expenditure

6 **Obesity**
 Definition of Obesity
 Incidence and Prevalence of Obesity
 Obesity Could Run in the Family
 Growth of Fast Food Industry and Obesity
 Why Is Obesity Harmful?
 Genetics of Obesity
 Gene Expression Profile in Obesity

CONTENTS

Biochemical and Functional Differences between Adipose Cells of Different Regions 49
Intramyocellular Lipid Content and Insulin Resistance 51
Intramyocellular Lipid Droplets and Insulin Resistance 53
Intramyocellular Lipid Droplets, Insulin Resistance, Perilipins, and HSL 54
Perilipins in Humans 55
Factors Regulating the Expression and Action of Perilipins 56
Perilipins and Inflammation 59
Low-grade Systemic Inflammation Occurs in Obesity 59
What Causes Abdominal Obesity? 61
11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD-1) Enzyme and Obesity 61
Glucocorticoids and Perilipins 63
Glucocorticoids, TNF-α, and Inflammation 64
Perilipins, 11β-HSD-1, and Abdominal Obesity and the Metabolic Syndrome in High-Risk Groups Such as South Asians 65

7 Perinatal Nutrition and Obesity 74
Appetite Regulatory Centers Develop during the Perinatal Period 74
Ventromedial Hypothalamus Plays a Significant Role in the Development of Obesity, Type 2 Diabetes Mellitus, and the Metabolic Syndrome 76
Glucokinase in Hypothalamic Neurons and VMH Lesion in Goto-Kakizaki Rats and Their Relationship to Obesity, Type 2 Diabetes Mellitus, and the Metabolic Syndrome 77
Insulin and Insulin Receptors in the Brain and Their Role in the Pathobiology of Obesity, Type 2 Diabetes Mellitus, and the Metabolic Syndrome 78
NPY, Insulin, and Nitric Oxide in Obesity, Type 2 Diabetes Mellitus, and the Metabolic Syndrome 80
Insulin, Endothelial Nitric Oxide, and Metabolic Syndrome 81
Perinatal Programming of Adult Diseases 81
Fetal Nutrition Influences the Developing Neuroendocrine Hypothalamus 82

8 Essential Hypertension 86
Prevalence and Incidence of Hypertension 86
Free Radicals in the Pathobiology of Hypertension 88
Increase in Superoxide Anion Production in Hypertension: How and Why? 89
Mechanism(s) of Induction of Hypertension by Superoxide Anion 91
Role of NO in Hypertension 92
Salt, Cyclosporine, and Calcium Modulate O₂⁻ and Endothelial NO Generation 94
l-Arginine, NO, and Asymmetrical Dimethylarginine in Hypertension and Pre-eclampsia 95
Antihypertensive Drugs Suppress Superoxide Anion and Enhance NO Generation 97
Transforming Growth Factor-β, NO, and Hypertension 97
CONTENTS

9 Dietary Factors and Hypertension 105
Carbohydrate-rich and High-fat Diet and Hypertension 105
Fructose-induced Hypertension and Insulin Resistance and
Its Modulation by Dietary Salt 106
Energy-dense Diet, Salt, and Hypertension 106
Diet-induced Hypertension, Renin-Angiotensin-Aldosterone System,
and Nitric Oxide 107
High-sugar and High-fat-induced Hypertension and Reactive Oxygen
Species and Nitric Oxide 108
High-fructose and Salt-induced Hypertension and Insulin Resistance 109
High-fat and High-carbohydrate-induced Hypertension and
Sympathetic Nervous Activity 111

10 Is Hypertension a Disorder of the Brain? 113
NO Synthase (NOS) Activity in the Brain, Kidney, and Endothelium and
Its Relationship to Hypertension 114
Reduced Hypothalamic NOS Produces Hypertension without Altering
Hypothalamic Blood Flow 115
Hypothalamic NO Regulates Sympathetic Outflow 116
Steroid-induced Hypertension and Hypothalamus 117
Exercise Enhances Hypothalamic NOS Activity 119
Both Hypertension and Type 2 Diabetes Mellitus and Hence the Metabolic
Syndrome Are Disorders of the Brain 119

11 Type 2 Diabetes Mellitus 122
Type 1 Diabetes Mellitus 122
Pathobiology of Type 1 Diabetes 123
Type 2 Diabetes Mellitus 125
Diagnostic Criteria for DM 126
Impaired Glucose Tolerance and Impaired Fasting Glucose 127
Definition of Gestational Diabetes Mellitus 127
Diagnostic Criteria for GDM 127

12 Pathophysiology of Type 2 Diabetes Mellitus with Particular
Reference to Hypothalamus 130
Type 2 Diabetes Mellitus as a Disorder of the Brain 130
Liver Communicates with the Brain through the Vagus 131
Liver and Pancreatic β Cells Communicate with Each Other through
the Vagus 132
The Gut-brain-liver Axis Is Activated by Long-chain Fatty Acids
(LCFAs or LCPUFAs) 132
BDNF and Obesity 136
BDNF and Type 2 Diabetes Mellitus in Humans 137
Insulin, Melanocortin, and BDNF 138
Ghrelin, Leptin, and BDNF 138
Low-grade Systemic Inflammation Occurs in Obesity and Type 2
Diabetes Mellitus 140
BDNF and Inflammation 141
CONTENTS

13 **Insulin and Insulin Receptors in the Brain and Their Role in the Pathogenesis of Obesity and Type 2 Diabetes Mellitus** 146

- Insulin and Insulin Receptors in the Brain 146
- Glucose Transporters and Glucokinase in Hypothalamus 147
- Neuron-specific Disruption of the Insulin Receptor Gene (NIRKO) 147
- Insulin and Hypothalamic Neuropeptides 148
- Leptin Receptors on Pancreatic β Cells 148
- Glucagon-like Peptide, Insulin, and the Metabolic Syndrome 149

14 **Insulin, Endothelial Nitric Oxide, and the Metabolic Syndrome** 156

- Insulin Resistance and Nitric Oxide 156
- Ghrelin Improves Endothelial Function in the Metabolic Syndrome 159
- Cross-talk between Insulin and Renin-Angiotensin-Aldosterone System 159
- Pro-inflammatory Cytokines Produce Insulin Resistance 161

15 **Obesity, Type 2 Diabetes Mellitus, the Metabolic Syndrome, and the Gut Microbiota** 167

- Gut Flora, Diet, Obesity, and Inflammation 167
- Germ-free Mice Are Resistant to Obesity 168
- Enteroendocrine Cell Expression of Gpr41 and Obesity 169
- Low-grade Systemic Inflammation, Diet, and Obesity 171
- Gastric Bypass Surgery for Obesity and the Metabolic Syndrome 171
- Diet, Gut, Liver, Adipose Tissue, and Hypothalamus in Obesity and the Metabolic Syndrome 173

16 **Is It Possible That the Metabolic Syndrome Originates in the Perinatal Period?** 177

- Perinatal Programming of Appetite Regulatory Centers and Hypothalamic Centers 177
- Insulin and Insulin Receptors in the Brain 178

17 **Essential Fatty Acids: Biochemistry and Physiology** 181

- Metabolism of EFAs 181
- Dietary Sources of EFAs 183
- Modulators of Metabolism of EFAs 183
- PUFAs and SREBPs 184
- Cholesterol, Saturated Fats, and Trans-fats Interfere with the Activity of Δ^6 and Δ^9 Desaturases 185
- Actions of EFAs and Their Metabolites 188
- Brief Description of Formation of Lipoxins, Resolvin, Neuroprotectin D1 (Protectins), and Maresins 193
- Nitrolipids 194

18 **Role of EFAs/PUFAs in Brain Growth and Development and Pathophysiology of the Metabolic Syndrome** 201

- PUFAs in Brain Growth and Development 201
CONTENTS

RAR-RXR Nuclear Receptors, PUFAs, and Neuronal Growth 202
Interaction among TNF-α, AA/EPA/DHA, and Insulin and Their Role in Neuronal Growth and Synapse Formation 202
PUFAs and Catenin, wnt, and Hedgehog Signaling Pathway in Brain Growth and Development 203
β-Catenin-wnt Signaling and PUFAs 205
Modulation of the Secretion and Function of NMDA, γ-Aminobutyric Acid (GABA), Serotonin, and Dopamine by PUFAs 205
Leptin Regulates NPY/AgRP and POMC/CART Neurons and Programs Hypothalamic “Body Weight/Appetite/Satiety Set Point” 209
PUFAs Regulate Leptin, NPY/AgRP, and POMC/CART Neurons and Participate in Programming Hypothalamic “Body Weight/Appetite/Satiety Set Point” 212
PUFAs, Insulin, and Acetylcholine Not Only Interact among Themselves but Are Also Neuroprotective in Nature 215
PUFAs and Insulin Resistance 215
Maternal Diet Influences δ/δ6 and δ/δ5 Desaturases and Leptin Levels 216
Interaction(s) among Hypothalamic Neuropeptides, Gut, Adipose Tissue, Insulin, Cytokines, and Free Radicals and Its Relevance to the Pathophysiology of the Metabolic Syndrome 217
Hypothalamic Gene Expression Profile in the RYGB Animal Model 218
Increased Phospholipase A2 Expression after RYGB Surgery and Its Relevance to Suppression of Low-grade Systemic Inflammation in the Obese and Formation of Anti-inflammatory Lipids 219
Expression of Gene for eNOS in RYGB 220
RYGB-induced Weight Loss Is Due to Changes in the Levels of Hypothalamic Neuropeptides and Monoamines 220
What Are the Diagnostic and Prognostic Implications of This Knowledge? 221
Therapeutic Implications 223
PUFAs and Endocannabinoids 224
PUFAs and Type 2 Diabetes Mellitus 224
Hypothalamic PUFAs Regulate Insulin Secretion and Glucose Homeostasis by Influencing ATP-sensitive K+ Channels 225
Vagus as the Communicator between Gut, Liver, and Hypothalamus 227

19 EFAs/PUFAs and Their Metabolites in Insulin Resistance 240
GLUT-4 in Insulin Resistance 240
Tumor Necrosis Factor Induces Insulin Resistance 242
Caloric Restriction Influences Insulin Signaling Pathway, Antioxidants, daf genes, PTEN, Sirtuins (Silent Mating Type Information Regulation 2 Homologue), and Longevity and Their Relationship to Insulin Resistance 242
PUFAs Can Reduce Insulin Resistance 244
PUFAs, GLUT-4, TNF-α, Anti-oxidants, daf Genes, SIRT1, and PPARs Clinical Implications of the Interactions among PUFAs, daf Genes, PPARs, and Sirtuins 246
CONTENTS

20 EFAs/PUFAs and Atherosclerosis 252
 Atherosclerosis Is a Systemic Inflammatory Condition 252
 Cross-talk among Platelets, Leukocytes, and Endothelial Cells 253
 Leukocytes and Atherosclerosis 254
 EFAs Modulate Uncoupling Protein-1 Expression 255
 Interaction(s) among ω-3 and ω-6 Fatty Acids and Trans-fats and
 Saturated Fats 255
 Atheroprotective Actions of ω-3 and ω-6 Fatty Acids: How and Why? 259

Index 265