Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Editors</td>
<td>xxi</td>
</tr>
<tr>
<td>Preface</td>
<td>xxv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxix</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxi</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xliii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Development and Status of Mobile and Wireless Communications</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Expectations of Data Traffic Growth</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Development Towards IMT-Advanced</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Global Research Activities</td>
<td>6</td>
</tr>
<tr>
<td>1.5 WINNER Project</td>
<td>8</td>
</tr>
<tr>
<td>1.6 Future Work</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>2 Usage Scenarios and Technical Requirements</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Key Scenario Elements</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1 Environment Type and Coverage Range</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2 Terminal Type</td>
<td>15</td>
</tr>
<tr>
<td>2.2.3 User Density and Traffic Parameters</td>
<td>16</td>
</tr>
<tr>
<td>2.2.4 User Mobility</td>
<td>16</td>
</tr>
<tr>
<td>2.2.5 Deployment Scenarios</td>
<td>18</td>
</tr>
<tr>
<td>2.2.5.1 Wide Area</td>
<td>18</td>
</tr>
<tr>
<td>2.2.5.2 Metropolitan Area</td>
<td>19</td>
</tr>
<tr>
<td>2.2.5.3 Local Area</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Service Classes and Service Requirements</td>
<td>20</td>
</tr>
<tr>
<td>2.3.1 Overview of Beyond-3G Applications</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2 Requirements for Service Provisioning</td>
<td>20</td>
</tr>
<tr>
<td>2.3.3 Mapping of Service Requirements to RAN Requirements</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4 Traffic Models</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4.1 Internet Applications</td>
<td>22</td>
</tr>
<tr>
<td>2.3.4.2 Voice over IP</td>
<td>23</td>
</tr>
</tbody>
</table>
Contents

2.3.4.3 Video Telephony .. 23
2.3.4.4 Streaming .. 23
2.3.4.5 File Transfer ... 24
2.3.4.6 Interactive Applications .. 24
2.4 Requirements for System Capabilities 24
 2.4.1 Generalised Mobility Support within WINNER 25
 2.4.2 Generalised Mobility Support between WINNER and Legacy Networks 25
 2.4.3 Measurement Requirements for the WINNER System 26
 2.4.4 Support for QoS Mechanisms and Prioritisation of Flows ... 28
2.5 Terminal Requirements ... 28
2.6 Performance Requirements ... 29
 2.6.1 Coverage ... 30
 2.6.2 Data Rate ... 30
 2.6.2.1 Definition of User Throughput 30
 2.6.2.2 Peak Data Rate .. 31
 2.6.2.3 Sustainable Data Rate .. 31
 2.6.3 Allowable Error Rate ... 31
 2.6.4 Delay ... 31
 2.6.4.1 Definition of User-Plane Packet Delay 31
 2.6.4.2 Achievable User-Plane Packet Delay 32
 2.6.5 Spectral Efficiency ... 32
 2.6.6 Maximum Terminal Speed .. 34
2.7 Spectrum Requirements .. 34
 2.7.1 WINNER Spectrum Range ... 34
 2.7.2 Utilisation of Current Mobile Service Bands 34
 2.7.3 Spectrum Fragmentation .. 34
 2.7.4 Coexistence with Other Systems 35
 2.7.5 Sharing Spectrum between WINNER RANs 35
 2.7.6 Sharing Spectrum between Cell Layers of a WINNER System ... 35
 2.7.7 System Bandwidth .. 36
2.8 Dependency of Requirements ... 36
2.9 Conclusion ... 36
 Acknowledgements .. 37
 References ... 38

3 WINNER II Channel Models .. 39
3.1 Introduction .. 39
3.2 Modelling Considerations ... 40
 3.2.1 Propagation Scenarios .. 40
 3.2.1.1 A1: Indoor Office ... 41
 3.2.1.2 B1: Urban Microcell ... 42
 3.2.1.3 B4: Outdoor to Indoor 43
 3.2.1.4 C1: Suburban Macrocell 43
 3.2.1.5 C2: Urban Macrocell .. 43
 3.2.1.6 D1: Rural Macrocell .. 43
5.5 Link Level Aspects of H-ARQ

5.5.1 Incremental Redundancy Scheme

5.5.2 Throughput and Delay Analysis

5.6 Conclusions

References

6 Link Level Procedures

6.1 Introduction

6.2 Pilot Design

6.2.1 Types of Pilot

6.2.2 Reference Pilot Design

6.2.2.1 In-band Pilot Patterns

6.2.2.2 Uplink Super-Frame Pilot Preamble

6.2.2.3 Case Study for the Reference Pilot Design

6.2.3 Capacity-Achieving Pilot Design

6.3 Channel Estimation

6.3.1 Channel Estimation Reference Design

6.3.2 Pilot-Aided Channel Estimation

6.3.3 Iterative Channel Estimation

6.3.3.1 Channel Estimation for Single-Input, Single-Output Scenarios

6.3.3.2 Channel Estimation for Multiple-Input, Multiple-Output Scenarios

6.3.4 Channel Prediction

6.4 Radio Frequency Impairments

6.4.1 HPA Non-Linearities

6.4.2 Phase Noise

6.4.2.1 Phase Noise Model

6.4.2.2 Phase Noise Suppression in OFDM with Spatial Multiplexing

6.4.2.3 Phase Noise Suppression for DFT-Precoded OFDM (Serial Modulation)

6.5 Measurements and Signalling

6.6 Link Level Synchronisation

6.6.1 Synchronisation Preamble Design

6.6.2 Synchronisation in a Licensed Band

6.6.2.1 Course Symbol Timing Synchronisation

6.6.2.2 Frequency Offset Estimation

6.6.3 Synchronisation in Shared Spectrum

6.7 Network Synchronisation

6.7.1 Firefly Synchronisation

6.7.1.1 Mathematical Model

6.7.1.2 Synchronisation of Coupled Oscillators

6.7.1.3 Refractory Period

6.7.2 Synchronisation Rules

6.7.3 Compensating for Propagation Delays: Timing Advance

6.7.4 Imposing a Global Time Reference on Firefly Synchronisation

6.8 Conclusion

6.8.1 Pilot Design

6.8.2 Channel Estimation
Contents

6.8.3 RF Imperfections 212
6.8.4 Link Layer Synchronisation 212
6.8.5 Self-Organised Network Synchronisation 212
Acknowledgements 213
References 213

7 Advanced Antennas Concept for 4G 219

7.1 Introduction 219
7.2 Multiple Antennas Concept 221
7.2.1 Generic Transmitter 221
7.2.1.1 Per Stream Rate Control 226
7.2.1.2 Space–Time Block Code 227
7.2.1.3 SDMA 228
7.2.2 Control Signalling 228
7.3 Spatial Adaptation 229
7.3.1 Single Stream Per User 230
7.3.2 Multiple Streams Per User 231
7.4 Spatial Schemes 231
7.4.1 Receive Diversity 231
7.4.2 Beamforming 232
7.4.2.1 Signal Model 233
7.4.2.2 Results 235
7.4.3 Diversity and Spatial Multiplexing 237
7.4.4 Beamforming and Spatial Multiplexing 241
7.4.4.1 Clustered Array Structure 243
7.4.4.2 Results 243
7.4.5 Linear MU-MIMO: SMMSE and RBD 247
7.4.5.1 System Models 249
7.4.5.2 Results 250
7.5 Interference Mitigation 250
7.6 Pilots, Feedback and Measurements 253
7.6.1 Pilots 253
7.6.2 Feedback 255
7.6.3 Measurements 257
7.7 MIMO Aspects in Relaying 258
7.7.1 Cooperative Relaying 260
7.7.1.1 Cooperative Diversity Relaying 261
7.7.1.2 Two-Dimensional Cyclic Prefix 262
7.7.2 Distributed Antenna Systems 264
7.7.2.1 Distributed MIMO Configuration 265
7.7.2.2 Performance of Linear MU-MIMO Precoding 266
7.8 Conclusion 269
7.8.1 Beamforming 269
7.8.2 Diversity and Linear Dispersion Codes 270
7.8.3 Multi-User MIMO Precoding 271
8 Layer-2 Relays for IMT-Advanced Cellular Networks

8.1 Introduction

8.2 Motivation for Layer-2 Relays and Prior Work

8.3 Relay-based Deployments

8.4 Design Choices for Relay-based Cellular Networks

8.5 System and Network Aspects

8.6 System-level Performance Evaluation
8.7 Conclusion 319
Acknowledgements 321
References 321

9 Multiple Access Schemes and Inter-cell Interference Mitigation Techniques 325
9.1 Introduction 325
9.2 Multiple Access Schemes 326
 9.2.1 Classic Multiple Access Schemes 326
 9.2.1.1 Frequency Division Multiple Access 326
 9.2.1.2 Time Division Multiple Access 327
 9.2.1.3 Code Division Multiple Access 328
 9.2.2 Multi-carrier Multiple Access Schemes 328
 9.2.2.1 Orthogonal Frequency Division Multiple Access 328
 9.2.2.2 Multi-Carrier Code Division Multiple Access 329
 9.2.3 WINNER Multiple Access and Medium Access Control Concept 330
 9.2.3.1 Chunk-wise Adaptive TDMA/OFDMA 332
 9.2.3.2 Block Interleaved and Block Equidistant Frequency Division Multiple Access 336
 9.2.3.3 Configuration of Non-Frequency-Adaptive Multiple Access Schemes 340
 9.2.3.4 Co-existence and Switching 343
 9.2.4 MAC Transmission Control 346
 9.2.4.1 Transmission Control Sequences for Downlinks 346
 9.2.4.2 Transmission Control Sequences for Uplinks 347
 9.2.4.3 Transmission and Retransmission Delays 348
9.3 Inter-cell Interference Mitigation Schemes 349
 9.3.1 Modelling Inter-cell Interference 350
 9.3.1.1 Link-Level Model 350
 9.3.1.2 System-Level Model 351
 9.3.2 Inter-cell Interference Averaging Techniques 351
 9.3.2.1 Inter-cell Interference Cancellation 352
 9.3.2.2 Dynamic Channel Allocation and Scheduling 357
 9.3.3 Inter-cell Interference Avoidance Techniques 360
 9.3.3.1 Resource Management by Restriction of Transmit Power 360
 9.3.3.2 Self-adaptive Re-use Partitioning 362
 9.3.3.3 Cost-function-based Scheduling 363
 9.3.3.4 Simulation Results 364
 9.3.4 Inter-cell Interference Mitigation Techniques Based on Smart Antennas 365
 9.3.4.1 Beamforming Techniques 365
 9.3.4.2 Transmit Diversity Techniques 368
 9.3.4.3 Receive Diversity and Interference Suppression Techniques 370
 9.3.4.4 Simulation Results 370
9.4 Conclusion 372
Acknowledgements 373
References 373
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Radio Resource Control and System Level Functions</td>
<td>377</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>377</td>
</tr>
<tr>
<td>10.2</td>
<td>IPCL Layer</td>
<td>378</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Transfer of User Data Between IPCL Entities</td>
<td>378</td>
</tr>
<tr>
<td>10.2.1.1</td>
<td>IPCL Header Compression</td>
<td>379</td>
</tr>
<tr>
<td>10.2.1.2</td>
<td>IPCL Data Ciphering and Ciphering Keys</td>
<td>380</td>
</tr>
<tr>
<td>10.2.2</td>
<td>IPCL and Handover</td>
<td>381</td>
</tr>
<tr>
<td>10.2.2.1</td>
<td>In-Sequence Delivery of Upper Layer PDUs</td>
<td>382</td>
</tr>
<tr>
<td>10.2.2.2</td>
<td>Duplicate Detection of Lower Layer SDUs</td>
<td>382</td>
</tr>
<tr>
<td>10.3</td>
<td>Radio Resource Control</td>
<td>383</td>
</tr>
<tr>
<td>10.3.1</td>
<td>RRC States</td>
<td>383</td>
</tr>
<tr>
<td>10.3.1.1</td>
<td>UT Detached State</td>
<td>383</td>
</tr>
<tr>
<td>10.3.1.2</td>
<td>UT Idle State</td>
<td>384</td>
</tr>
<tr>
<td>10.3.1.3</td>
<td>UT Active State</td>
<td>384</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Mobility Management in Idle Mode</td>
<td>385</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Paging</td>
<td>385</td>
</tr>
<tr>
<td>10.3.2.2</td>
<td>Tracking Area</td>
<td>385</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Mobility Management in Active Mode</td>
<td>386</td>
</tr>
<tr>
<td>10.3.3.1</td>
<td>Micro Mobility</td>
<td>386</td>
</tr>
<tr>
<td>10.3.3.2</td>
<td>Macro Mobility</td>
<td>388</td>
</tr>
<tr>
<td>10.3.3.3</td>
<td>Intramode Handover</td>
<td>389</td>
</tr>
<tr>
<td>10.3.3.4</td>
<td>Intermode Handover</td>
<td>390</td>
</tr>
<tr>
<td>10.3.3.5</td>
<td>Intersystem Handover</td>
<td>392</td>
</tr>
<tr>
<td>10.3.3.6</td>
<td>Inter GW Handover and Load Balancing</td>
<td>393</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Flow Admission Control</td>
<td>394</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Congestion Avoidance Control</td>
<td>396</td>
</tr>
<tr>
<td>10.3.5.1</td>
<td>Admission Control: Two-Stage Approach</td>
<td>396</td>
</tr>
<tr>
<td>10.3.5.2</td>
<td>Flow Control</td>
<td>401</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Load and Congestion Control</td>
<td>404</td>
</tr>
<tr>
<td>10.4</td>
<td>Centralised, Distributed and Hybrid RRM Architecture</td>
<td>406</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Distributed RRM</td>
<td>406</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Centralised RRM</td>
<td>406</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Hybrid RRM</td>
<td>407</td>
</tr>
<tr>
<td>10.5</td>
<td>System-Level Performance Results</td>
<td>407</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Intersystem Handover</td>
<td>407</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Intermode Handover</td>
<td>409</td>
</tr>
<tr>
<td>10.5.2.1</td>
<td>Simulation Setup</td>
<td>409</td>
</tr>
<tr>
<td>10.5.2.2</td>
<td>Intramode and Intermode Handover Algorithms</td>
<td>410</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Intermode Handover Results</td>
<td>412</td>
</tr>
<tr>
<td>10.5.3.1</td>
<td>Intermode Handover Triggered by Residual Throughput</td>
<td>412</td>
</tr>
<tr>
<td>10.5.3.2</td>
<td>Intermode Handover Triggered by UT Velocity</td>
<td>414</td>
</tr>
<tr>
<td>10.6</td>
<td>Conclusion</td>
<td>414</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>416</td>
<td></td>
</tr>
</tbody>
</table>
11 Sharing and Flexible Spectrum Use Capabilities 419

11.1 Introduction 419

11.2 Spectrum Technologies Framework 420
 11.2.1 Sharing and Co-existence Functions 421
 11.2.1.1 Vertical Sharing 1: WINNER Is the Primary System 421
 11.2.1.2 Vertical Sharing 2: WINNER Is the Secondary System 421
 11.2.1.3 Horizontal Sharing with Coordination 422
 11.2.1.4 Horizontal Sharing Without Coordination 422
 11.2.2 Spectrum Assignment Functions 423
 11.2.2.1 Long-term Assignment 423
 11.2.2.2 Short-term Assignment 424
 11.2.3 Generic Spectrum Functions 424
 11.2.3.1 WINNER Spectrum Manager 424
 11.2.3.2 Spectrum Register 424

11.3 Detailed Design of a Spectrum Assignment Negotiation Mechanism 425
 11.3.1 Long-term Spectrum Assignment 425
 11.3.2 Short-term Spectrum Assignment 427
 11.3.3 Interactions between Long-term and Short-term Spectrum Assignment 429
 11.3.4 Registration of Nodes with Spectrum Manager 430
 11.3.5 Specific Short-term Spectrum Assignment Algorithms 430
 11.3.5.1 Negotiated Amount of Resources Exchanged 431
 11.3.5.2 Matching Amount of Resources Exchanged 431
 11.3.5.3 Surplus of Resources Exchanged 431

11.4 Spectrum Assignment Enabling Mechanisms 431
 11.4.1 Multi-band Scheduler 431
 11.4.1.1 Hybrid ARQ Context Transfer 434
 11.4.1.2 MBS and Spectrum Sharing 435
 11.4.2 Communication Between Base Stations 435
 11.4.2.1 Trends in BS-to-BS Communication and Site Sharing 435
 11.4.2.2 Requirements for BS-to-BS Communication 436
 11.4.2.3 Possibilities for Inter-BS Communication 437
 11.4.2.4 Summary of BS-to-BS Communication Technologies 440

11.5 WINNER Sharing with FSS 440
 11.5.1 Dimensioning of Hard Exclusion Zones 442
 11.5.1.1 Typical FSS Parameters Considered for the Simulation 442
 11.5.1.2 Results 442
 11.5.2 Mitigated Exclusion Zone Calculation 444
 11.5.3 Advanced Mitigation Techniques 445
 11.5.3.1 Utilisation of Information Describing the FSS Usage in a Database 446
 11.5.3.2 Utilisation of Spectrum Beacon Channel 446
 11.5.3.3 Multi-antenna Technologies 446

11.6 Performance Evaluation of Spectrum Assignment Mechanisms 447
 11.6.1 Performance Assessment of Long-term Spectrum Assignment 447
 11.6.1.1 Considered Scenarios 447
 11.6.1.2 Gradual Spectral Deployment of WINNER RANs 449
 11.6.2 Performance Assessment of Short-term Spectrum Assignment 451
Contents

11.6.2.1 Evaluation of Inter-cell Interference Issues for ST Spectrum Assignment 451
11.6.2.2 Cell-Pair Selection Algorithms for ST Assignment 453
11.6.2.3 Impact of Cell-Selection Algorithms on ST Performance Assignment 453
11.7 Conclusion 455
Acknowledgements 456
References 456

12 ITU-R Spectrum Demand Calculation for IMT-Advanced 459
12.1 Introduction 459
12.2 ITU-R Work on Spectrum Requirements of IMT-Advanced 460
12.2.1 Background and Role of ITU-R 460
12.2.2 ITU-R Preparations for WRC-07 461
12.2.3 WINNER Contributions to ITU-R 463
12.3 ITU-R Spectrum Calculation Methodology 464
12.3.1 Methodology Flow and Definitions 464
12.3.1.1 Services 464
12.3.1.2 Environments 467
12.3.1.3 Radio Access Technique Groups 467
12.3.2 Traffic Calculation and Distribution 468
12.3.3 Capacity Requirement Calculation 469
12.3.4 Spectrum Requirement Calculation 470
12.3.5 Summary of Methodology 471
12.4 Software Implementation of Methodology 472
12.4.1 Description and Use of Software Tool 472
12.4.2 Inputs to Software Tool 474
12.4.3 Intermediate Calculations and Outputs from Software Tool 475
12.5 Estimated Spectrum Requirements of IMT-Advanced 477
12.6 Conclusion 478
Acknowledgements 479
References 479

13 System Model, Test Scenarios, and Performance Evaluation 481
13.1 Introduction 481
13.2 Performance Assessment of Wireless Networks 482
13.3 Interface between Link and System Simulations 483
13.4 Test Scenarios 484
13.4.1 Test Environments 485
13.4.2 Deployment Assumptions 485
13.4.2.1 Base Station 489
13.4.2.2 User Terminal 489
13.4.2.3 Relay Node 489
13.4.2.4 Network Layout 489
13.4.2.5 Channel Modelling 492
13.4.3 Basic OFDM Parameters and Frame Dimensions 492
13.5 Spectral Efficiency and Number of Satisfied Users under QoS Constraints 493
13.6 End-to-End Performance Evaluation 495
13.6.1 Base Coverage Urban Scenario
 13.6.1.1 Frequency-domain Link Adaptation Gains 495
 13.6.1.2 Spectral Efficiency and Maximum Number of Satisfied Users 498
 13.6.1.3 Improving Cell Edge Performance and Indoor Coverage by Relaying 501
 13.6.1.4 Dynamic Resource Allocation in Relay-Enhanced Cells 503
 13.6.1.5 Cooperative Relaying 504
 13.6.1.6 Multicast/Broadcast Services in Relay-Enhanced Cells 504
 13.6.1.7 Impact of Traffic and Packet Modelling on Spectral Efficiency 508
13.6.2 Microcellular Scenario 513
 13.6.2.1 Indoor Coverage Improvement by Relay Deployments 513
 13.6.2.2 Soft Frequency Re-use 514
 13.6.2.3 Soft and Fractional Frequency Re-use and Re-use One 516
13.6.3 Local Area Scenarios 517
13.7 Conclusion 521
Acknowledgements 521
References 522

14 Cost Assessment and Optimisation for WINNER Deployments 525
14.1 Introduction 525
14.2 Cost Assessment Framework and Assumptions 526
 14.2.1 General Cost Assessment Procedure 526
 14.2.2 Types of Cost Assessment 527
 14.2.3 Challenges in Cost Assessment 528
 14.2.3.1 Spectrum Sharing 528
 14.2.3.2 Roaming Agreements 529
 14.2.3.3 Infrastructure Sharing 529
 14.2.3.4 Third-party Network Ownership, Operation and Maintenance 529
 14.2.3.5 New Business Entities 529
 14.2.3.6 Summary 530
 14.2.4 WINNER: Assumptions and Technology Options 530
14.3 Cost Components 530
 14.3.1 Classification of Cost Components 531
 14.3.2 RAN CAPEX Costs 532
 14.3.2.1 Base Station Equipment 532
 14.3.2.2 Relay Equipment 533
 14.3.2.3 Base Station Deployment 533
 14.3.2.4 Relay Deployment 534
 14.3.2.5 Base Station Site Acquisition 534
 14.3.2.6 Relay Site Acquisition 534
 14.3.2.7 Gateways 534
 14.3.2.8 Centralised RRM Servers 535
 14.3.2.9 RAN Connectivity 535
 14.3.2.10 Initial Radio Planning and Network Optimisation 535
 14.3.3 RAN OPEX Costs 535
 14.3.3.1 Base Station Site Rent and Maintenance 536
Contents

14.3.3.2 Relay Site Rent and Maintenance 536
14.3.3.3 Rent for RAN Connectivity 536
14.3.3.4 Power 537
14.3.3.5 Network Operation and Maintenance 537
14.3.3.6 Software and Firmware Updates 537
14.3.4 Example Cost Figures 537
 14.3.4.1 Breakdown of Macro BS Equipment Costs 538
 14.3.4.2 Transformation of OPEX into CAPEX Costs 539
14.4 Cost Assessment Models 540
 14.4.1 Previous Work 540
 14.4.2 Background and Principles 541
 14.4.3 Network Deployment 541
 14.4.3.1 Traffic Modelling 542
 14.4.3.2 RAP Deployment Strategies 543
 14.4.3.3 Radio Propagation Models 544
 14.4.3.4 Radio and Resource Assignment Model 546
 14.4.4 Cost Calculation 549
 14.4.4.1 Relay-Specific Cost Evaluation Issues 549
 14.4.4.2 Deployment Representation by Indifference Maps 550
14.5 Reference Deployment Scenarios and Cost Assessments 555
 14.5.1 Deployment Simulations and Assumptions 555
 14.5.2 Case Studies 1 and 2: WA Urban, Relay Nodes vs Micro BS 555
 14.5.2.1 Simulation Scenario Description 555
 14.5.2.2 Cost-optimal Deployment and Total Deployment Cost of RNs 557
 14.5.2.3 Cost-optimal Deployment and Total Deployment Cost of Micro BSs 559
 14.5.2.4 Incumbent vs Greenfield Deployment Costs 560
 14.5.3 Case Studies 3 and 4: WA Rural, Relay Nodes vs Micro BS 560
 14.5.3.1 Simulation Scenario Description 560
 14.5.3.2 Cost-optimal Deployment and Total Deployment Cost 561
 14.5.4 Case Studies 5 and 6: WA Urban, Relay Nodes vs Micro BS, Intelligent BS Deployment 562
 14.5.5 Case Studies 7 and 8: MIMO Assessment 564
 14.5.5.1 Deployment Cost Comparison between SISO and MIMO Systems 564
 14.5.5.2 Performance Improvement from the Use of Multiple Antennas 565
 14.5.5.3 Deployment Evaluation 565
 14.5.5.4 Cost Assessment of the Multi-antenna Configurations 566
14.6 Conclusion 566
Acknowledgements 567
References 567

Index 569