Contents

Preface xvii

Part I  General Aspects

1  New Trends in Drug Discovery 3
   Gerd Schnorrenberg
   1.1 Introduction 3
   1.1.1 Analysis of New Molecular Entities Approved in 2015 3
   1.2 New Trends in NCE Discovery 7
   1.3 Enhanced Lead Generation Strategies 7
      1.3.1 Analogue Approach 9
      1.3.2 High Throughput Screening (HTS) 9
      1.3.3 Structure-Based Design 11
      1.3.4 Virtual Screening 12
      1.3.5 Fragment-Based Lead Discovery 13
      1.3.6 Repositioning 14
      1.3.7 Additional New Trends in Hit/Lead Generation 15
   1.4 Early Assessment of Development Aspects during Drug Discovery 16
      1.4.1 DMPK 17
      1.4.2 Assessment of Physicochemical Parameters 18
      1.4.3 Tolerability Assessment 19
   1.5 New Biological Entities (NBEs) 19
      1.5.1 Antibody Engineering to Reduce Immunogenicity 23
      1.5.2 Progress in Antibody Production and Engineering of Physicochemical Properties 24
      1.5.3 Engineering to Improve Efficacy 25
      1.5.4 New Formats 26
      1.5.4.1 Antibody–Drug Conjugates 26
      1.5.4.2 Bispecific Antibodies 28
   1.6 General Challenges in Drug Discovery 30
   1.7 Summary 31
   Acknowledgments 31
   List of Abbreviations 31
   References 32
2 Patenting Small and Large Pharmaceutical Molecules
Uwe Albersmeyer, Ralf Malessa, and Ulrich Storz

2.1 The Role of Patents in the Pharmaceutical Industry
2.2 Classification of Active Pharmaceutical Ingredient Grouping
2.3 Patentability Criteria and Patentable Embodiments
2.3.1 Patent Eligibility and Patentability
2.3.2 Patent Eligibility of Molecules
2.3.2.1 Small Molecules and Peptides
2.3.2.2 Molecules Isolated from Nature
2.3.3 Novelty
2.3.3.1 Novelty of Molecules that are More or Less Identical to Molecules from the Human Body
2.3.4 Inventive Step/Non-Obviousness
2.3.5 Patentability Criteria and Patentable Embodiments in Biopharmaceutics
2.3.5.1 Different Types of Biopharmaceutics
2.3.5.2 Monoclonal Antibodies
2.3.5.3 Nucleic Acid-Based Therapeutics
2.4 Patent Term Extensions and Adjustments, Supplementary Protection Certificates, and Data Exclusivity in Biopharmaceutics
2.4.1 Introduction
2.4.2 Patent Lifetime
2.4.2.1 Patent Term Adjustment (PTA)
2.4.2.2 Patent Term Extension (PTE) and Supplementary Protection Certificates (SPC)
2.4.2.3 Pediatric Investigations (EU)
2.4.3 Exclusivity Privileges Related to Regulatory Procedures
2.4.3.1 Data Exclusivity and Market Exclusivity
2.4.3.2 Orphan Drugs
2.5 Patent Lifecycle Management
2.5.1 Formulations and/or Galenics
2.5.2 Combination Products
2.5.3 Second or Higher Medical Indication
2.5.4 New Dosage Regimens
2.5.5 Further Options for Small Molecules
2.5.6 Divisional Applications
2.6 Conclusion

List of Abbreviations
References

Part II Drug Class Studies

3 Kinase Inhibitor Drugs
Peng Wu and Amit Choudhary

3.1 Introduction
3.2 Historical Overview
3.2.1 Before 1980 70
3.2.2 1980s 70
3.2.3 1990s 70
3.2.4 After 2000 72
3.3 Approved Kinase Inhibitors 72
3.3.1 FDA-Approved Non-Covalent Small-Molecule Kinase Inhibitors 74
3.3.1.1 Bcr–Abl Inhibitors 74
3.3.1.2 ErbB Family Inhibitors 77
3.3.1.3 VEGFR Family Inhibitors 77
3.3.1.4 JAK Family Inhibitors 78
3.3.1.5 ALK Inhibitors 78
3.3.1.6 MET Inhibitors 78
3.3.1.7 B-Raf Inhibitors 79
3.3.1.8 MEK Inhibitors 79
3.3.1.9 PI3K Inhibitor 79
3.3.1.10 CDK Inhibitor 80
3.3.2 FDA Approved Covalent Small Molecule Kinase Inhibitors 80
3.3.3 FDA-Approved Rapalogs 80
3.3.4 Other Approved Kinase Inhibitors 81
3.4 New Directions 82
3.5 Conclusion 83
List of Abbreviations 83
References 83

4  Evolution of Nonsteroidal Androgen Receptor Antagonists 95
Arwed Cleve and Duy Nguyen
4.1 Introduction 95
4.2 Flutamide (Eulexin®) 96
4.3 Nilutamide (Anandron®) 98
4.4 Bicalutamide (Casodex®) 99
4.5 Enzalutamide (Xtandi®) 102
4.6 Outlook 106
4.7 Conclusion 106
List of Abbreviations 106
References 107

Part III  Case Studies 111

5  Development of T-Cell-Engaging Bispecific Antibody Blinatumomab (Blincyto®) for Treatment of B-Cell Malignancies 113
Patrick A. Baeuerle
5.1 Introduction 113
5.1.1 Brief History of Bispecific Antibodies 114
5.1.2 History of T-Cell-Engaging Antibodies 115
5.1.3 History and Design of Blinatumomab  116
5.1.4 Blinatumomab Mode of Action  117
5.1.5 Manufacturing of Blinatumomab  118
5.1.6 Clinical Development of Blinatumomab  118
5.1.7 Administration of Blinatumomab  120
5.1.8 Side Effects of Blinatumomab  121
5.2 Discussion  122
5.2.1 Other BiTE™ Antibodies in Development  124
5.2.2 Blinatumomab versus CD19 CAR-T Cell Therapy  125
5.3 Summary  126
List of Abbreviations  126
References  127

6  Ceritinib: A Potent ALK Inhibitor for the Treatment of Crizotinib-Resistant Non-Small Cell Lung Cancer Tumors  131
Pierre-Yves Michelley
6.1 Introduction  131
6.2 Drug Design and Strategy  134
6.3 Synthesis of Ceritinib  135
6.4 In Vitro Evaluation of Ceritinib  136
6.5 In Vitro ADME Evaluation of Ceritinib  137
6.6 Preclinical Pharmacokinetic Evaluation of Ceritinib  138
6.7 In Vivo Evaluation of Ceritinib  138
6.8 Evaluation of Ceritinib in Crizotinib-Resistance Mutations  140
6.9 Mouse Model of Crizotinib-Resistant Tumors  141
6.10 Clinical Phase I Evaluation of Ceritinib  143
6.11 Conclusion  146
List of Abbreviations  146
References  146

7  Discovery, Development, and Mechanisms of Action of the Human CD38 Antibody Daratumumab  153
7.1 Introduction  153
7.2 CD38: The Target  154
7.2.1 CD38 as a Therapeutic Target  154
7.2.2 CD38 Function  154
7.2.3 CD38 Expression in Normal Tissue  155
7.2.4 CD38 Expression in Cancer  155
7.3 Discovery of Daratumumab  156
7.4 Daratumumab Combines Multiple Mechanism of Actions  157
7.4.1 Complement-Dependent Cytotoxicity (CDC)  157
7.4.2 Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC)  158
7.4.3 Antibody-Dependent Cellular Phagocytosis (ADCP)  158
7.4.4 Programmed Cell Death (PCD)  159
Contents

7.4.5 Enzymatic Modulation 159
7.4.6 Immunomodulation 160
7.5 Single-Agent Antitumor Activity of Daratumumab in Multiple Myeloma 160
7.5.1 Monotherapy Studies with Daratumumab 163
7.5.2 Factors That Predict Response to Daratumumab 164
7.5.3 Daratumumab in Other Plasma Cell Dyscrasias 164
7.5.4 Subcutaneous Delivery of Daratumumab 165
7.5.5 Interference of Daratumumab in Clinical Laboratory Assays 165
7.6 Daratumumab-Based Combination Therapies in Multiple Myeloma 166
7.6.1 Preclinical Combination Studies 167
7.6.2 Clinical Combination Studies 168
7.7 Potential of Daratumumab Outside Multiple Myeloma 171
7.7.1 Other Hematologic Malignancies 171
7.7.2 Solid Tumors 171
7.7.3 Autoimmune Disorders 172
7.8 Conclusions and Future Perspectives 173
7.9 Summary 175
List of Abbreviations 176
References 178

8 The Discovery of Obeticholic Acid (Ocaliva™): First-in-Class FXR Agonist 197
Roberto Pellicciari, Mark Pruzanski, and Antimo Gioiello
8.1 Introduction 197
8.2 Bile Acids in Health and Disease 197
8.2.1 Structure and Properties of Natural Bile Acids 197
8.2.2 Physiology 200
8.2.3 Bile Acids as Therapeutic Agents 202
8.3 The Early Bile Acid Medicinal Chemistry Program at the University of Perugia 204
8.4 The Breakthrough (1999): Bile Acids Are the Endogenous Ligands of the Farnesoid X Receptor (FXR) 210
8.5 Discovery of 6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA, INT-747, Obeticholic Acid) 214
8.5.1 Design, Synthesis, and Structure–Activity Relationships of C6-Modified CDCA Derivatives 214
8.5.2 Scale-Up Synthesis of Obeticholic Acid 220
8.6 Properties and Preclinical Studies of Obeticholic Acid 222
8.6.1 Physicochemical Properties, Pharmacokinetics, and Metabolism 222
8.6.2 OCA in Preclinical Models of Liver Diseases 225
8.7 Obeticholic Acid (Ocaliva™) for the Treatment of Primary Biliary Cholangitis (PBC): Phases I–III Clinical Studies to Establish Clinical Efficacy 228
8.8 Conclusions and Future Directions 230
List of Abbreviations 231
References 232
## 9 Discovery and Development of Obinutuzumab (GAZYVA, GAZYVARO), a Glycoengineered Type II Anti-CD20 Antibody for the Treatment of Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia 245

Christian Klein, Ekkehard Mössner, Marina Bacac, Günter Fingerle-Rowson, and Pablo Umaña

### 9.1 Introduction 245

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Preclinical Experience with Obinutuzumab 246</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Characteristics and Mechanisms of Action of Type I and Type II CD20 Antibodies 246</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Obinutuzumab Development, Chemistry, and Production 247</td>
</tr>
<tr>
<td>9.2.3</td>
<td>CD20 Binding by Obinutuzumab 248</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Complement-Dependent Cytotoxicity 249</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Direct Cell Death Induction 249</td>
</tr>
<tr>
<td>9.2.6</td>
<td>FcγR Binding 249</td>
</tr>
<tr>
<td>9.2.7</td>
<td>Antibody-Dependent Cellular Cytotoxicity and Antibody-Dependent Cellular Phagocytosis 250</td>
</tr>
<tr>
<td>9.2.8</td>
<td>Whole Blood B-Cell Depletion 250</td>
</tr>
<tr>
<td>9.2.9</td>
<td>Activity of Single-Agent Obinutuzumab in Human Xenograft Models of B-Cell Lymphoma 251</td>
</tr>
<tr>
<td>9.2.10</td>
<td>Activity of Obinutuzumab Combined with Chemotherapy and Novel Agents in Human Xenograft Models of B-Cell Lymphoma 251</td>
</tr>
<tr>
<td>9.2.11</td>
<td>Conclusions from Preclinical Studies 252</td>
</tr>
<tr>
<td>9.3</td>
<td>Clinical Experience with Obinutuzumab 253</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Non-Hodgkin Lymphoma 253</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Early Clinical Experience (Phase I/II) 253</td>
</tr>
<tr>
<td>9.3.1.2</td>
<td>Phase III Studies 262</td>
</tr>
<tr>
<td>9.3.1.3</td>
<td>Ongoing Clinical Studies of Novel Combinations, Including Chemotherapy-Free Regimens 269</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Chronic Lymphocytic Leukemia 270</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Early Clinical Experience (Phase I/II) 270</td>
</tr>
<tr>
<td>9.3.2.2</td>
<td>Phase III Studies 272</td>
</tr>
<tr>
<td>9.3.2.3</td>
<td>Ongoing Clinical Studies of Novel Combinations, Including Chemotherapy-Free Regimens 273</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Obinutuzumab in Non-tumor Indications 273</td>
</tr>
<tr>
<td>9.4</td>
<td>Conclusions 274</td>
</tr>
</tbody>
</table>

### 10 Omarigliptin (MARIZEV™, MK-3102) 291

Tesfaye Biftu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction 291</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Discovery of Omarigliptin 293</td>
</tr>
<tr>
<td>10.1.2</td>
<td>X-ray and Modeling Studies 297</td>
</tr>
</tbody>
</table>

Acknowledgments 274

List of Abbreviations 275

References 276
10.1.3 Synthesis of Omarigliptin 298
10.1.4 In Vitro Pharmacology 302
10.1.4.1 In Vivo Pharmacology in Preclinical Species 302
10.1.4.2 Pharmacokinetics (PK) in Preclinical Species 303
10.1.4.3 Pharmaceutical Properties 304
10.1.4.4 Preclinical Safety Pharmacology 304
10.1.4.5 Clinical Data 305
10.1.5 Add-On Studies 308
10.1.5.1 Add-On to Metformin and Sitagliptin 308
10.1.5.2 Add-On to Glimepiride 310
10.1.5.3 Safety and Tolerability 311
10.2 Summary 311
List of Abbreviations 312
References 313

11 Opicapone, a Novel Catechol-O-Methyltransferase Inhibitor (COMT) to Manage the Symptoms of Parkinson’s Disease 319
László E. Kiss, Maria João Bonifácio, José Francisco Rocha, and Patrício Soares-da-Silva
11.1 Introduction 319
11.2 COMT Inhibitors Used in L-DOPA Treatment 320
11.3 The Discovery of Opicapone 322
11.3.1 Early Pyrazole Analogues 322
11.3.2 Modulation of the Central Heterocyclic Core 325
11.3.3 Optimization of Oxadiazolyl Nitrocatechols 327
11.3.4 Identification of Opicapone 330
11.4 Opicapone Preclinical Profile 332
11.5 Clinical Studies with Opicapone 333
11.5.1 Phase I and Phase II Studies 333
11.5.2 Phase III Studies 334
11.6 Conclusion 335
List of Abbreviations 336
References 336

12 The Discovery of Osimertinib (TAGRISSO™): An Irreversible Inhibitor of Activating and T790M Resistant Forms of the Epidermal Growth Factor Receptor Tyrosine Kinase for the Treatment of Non-Small Cell Lung Cancer 341
Michael J. Waring
12.1 Introduction 341
12.2 Discussion 346
12.3 Summary 353
List of Abbreviations 354
Acknowledgment 355
References 355
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Discovery of Pitolisant, the First Marketed Histamine H₃-Receptor Inverse Agonist/Antagonist for Treating Narcolepsy</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>C. Robin Ganellin, Jean-Charles Schwartz, and Holger Stark</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>359</td>
</tr>
<tr>
<td>13.2</td>
<td>Chemical Background</td>
<td>360</td>
</tr>
<tr>
<td>13.3</td>
<td>Generation of a Chemical Lead</td>
<td>362</td>
</tr>
<tr>
<td>13.4</td>
<td>Pharmacological Screening Methods</td>
<td>366</td>
</tr>
<tr>
<td>13.5</td>
<td>Structure–Activity Optimization</td>
<td>367</td>
</tr>
<tr>
<td>13.6</td>
<td>Generation of Pitolisant</td>
<td>369</td>
</tr>
<tr>
<td>13.7</td>
<td>Preclinical Development Studies</td>
<td>371</td>
</tr>
<tr>
<td>13.8</td>
<td>Clinical Development Studies</td>
<td>373</td>
</tr>
<tr>
<td>13.9</td>
<td>Conclusion</td>
<td>374</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>375</td>
</tr>
<tr>
<td>14</td>
<td>Discovery and Development of Safinamide, a New Drug for the Treatment of Parkinson’s Disease</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>Paolo Pevarello and Mario Varasi</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>383</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Parkinson’s Disease</td>
<td>383</td>
</tr>
<tr>
<td>14.1.2</td>
<td>From James Parkinson to L-Dopa</td>
<td>385</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Pharmacotherapy of Parkinson’s Disease</td>
<td>386</td>
</tr>
<tr>
<td>14.2</td>
<td>Discovery of Safinamide</td>
<td>387</td>
</tr>
<tr>
<td>14.2.1</td>
<td>From Milacemide to Safinamide</td>
<td>388</td>
</tr>
<tr>
<td>14.2.2</td>
<td>SAR Efforts on 2-Aminoamide Analogues Provide Lead Molecules</td>
<td>391</td>
</tr>
<tr>
<td>14.2.3</td>
<td>In Vivo Antiepileptic Efficacy Assessment Identifies Safinamide</td>
<td>395</td>
</tr>
<tr>
<td>14.3</td>
<td>Mechanisms of Action of Safinamide</td>
<td>396</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Safinamide Inhibits MAO-B</td>
<td>396</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Safinamide Blocks Voltage-Dependent Sodium Channels (VDSCs)</td>
<td>398</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Safinamide Modulates Voltage-Dependent Calcium Channels (VDCCs)</td>
<td>399</td>
</tr>
<tr>
<td>14.3.4</td>
<td>Safinamide Inhibits Glutamate Release</td>
<td>399</td>
</tr>
<tr>
<td>14.4</td>
<td>Preclinical In Vivo Pharmacological Characterization of Safinamide</td>
<td>399</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Preclinical Epilepsy Models</td>
<td>400</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Preclinical PD Models</td>
<td>401</td>
</tr>
<tr>
<td>14.5</td>
<td>Pharmacokinetics and Metabolism (PKM)</td>
<td>402</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Preclinical PKM</td>
<td>402</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Clinical PKM and Safety</td>
<td>403</td>
</tr>
<tr>
<td>14.6</td>
<td>Clinical Efficacy of Safinamide</td>
<td>403</td>
</tr>
<tr>
<td>14.6.1</td>
<td>Clinical Studies in Early PD</td>
<td>403</td>
</tr>
<tr>
<td>14.6.2</td>
<td>Clinical Studies in Advanced PD</td>
<td>406</td>
</tr>
<tr>
<td>14.6.3</td>
<td>Clinical Trials for Other Indications</td>
<td>407</td>
</tr>
</tbody>
</table>