Contents

Contributors xiii
Preface xvii
Acknowledgements xxi

1 The Lignans: A Family of Biologically Active Polyphenolic Secondary Metabolites 1
Anna K.F. Albertson and Jean-Philip Lumb
1.1 Introduction 1
1.2 Biosynthesis of Lignans 3
1.3 Synthetic Approaches to Lignans and Derivatives 7
1.3.1 Biomimetic and Bio-Inspired Approaches 8
1.3.2 Dibenzylbutyrolactones 18
1.3.3 Arylnaphthalenes and Aryltetralins 24
1.3.4 2,5-Diaryl tetrahydrofurans 41
1.3.5 2-Aryl-4-Benzyltetrahydrofurans 47
1.3.6 Furofurans 53
1.3.7 Dibenzocyclooctadienes 53
1.4 Conclusion 60
References 65

2 Anthocyanin Accumulation is Controlled by Layers of Repression 71
Andrew C. Allan, Kathy E. Schwin, and Richard V. Espley
2.1 Introduction 71
2.2 MYBs and bHLHs Directly Activate Anthocyanin Production 72
2.3 Exciting Phenotypes in Horticulture are often Caused by Variations in the Expression of Key MYBs 73
2.4 Is There a Cost to the Plant of Overaccumulation of Anthocyanins? 74
2.5 Controlling Anthocyanin Levels 75
2.5.1 Fine Control of MYB Activator Expression 75
2.6 The MYB Activator is Degraded at Night 76
2.7 MYB Activator Competes with MYB Repressors 77
2.8 miRNA-Targeted Degradation of MYB Transcript 78
2.9 Turnover of Anthocyanin Vacuolar Content by Peroxidases 78
2.10 Summary 79
References 79
## 3 The Subtleties of Subcellular Distribution: Pointing the Way to Underexplored Functions for Flavonoid Enzymes and EndProducts

*Brenda S.J. Winkel*

- **3.1 Multienzyme Complexes and Metabolic Networks**
- **3.2 New Insights from Global Surveys of Protein Interactions**
- **3.3 The Flavonoid Metabolon**
  - **3.3.1 Earliest Evidence**
  - **3.3.2 Protein Interactions in *Arabidopsis***
  - **3.3.3 Corroboration in Other Species**
- **3.4 Subcellular Distribution of Flavonoid Enzymes and Evidence for Alternative Metabolons**
  - **3.4.1 Cytoplasmic and Vacuolar Localization**
  - **3.4.2 Plastid and Mitochondrial Localization**
  - **3.4.3 Nuclear Localization**
- **3.5 Posttranslational Modifications – An Underexplored Area of Flavonoid Metabolism**
- **3.6 Why Do We Need to Know?**
- **3.7 Future Prospects**

## 4 Transcriptional and Metabolite Profiling Analyses Uncover Novel Genes Essential for Polyphenol Accumulation

*Wilfried Schwab, Ludwig Ring, and Chuankui Song*

- **4.1 Introduction**
- **4.2 Transcriptional and Metabolite Profiling Analyses in Strawberry Fruit**
  - **4.2.1 Analysis of Soluble Phenolics**
  - **4.2.2 Transcript Analysis**
- **4.3 Characterization of Peroxidase 27**
  - **4.3.1 Expression Analysis**
  - **4.3.2 Functional Analysis**
- **4.4 Competition of the Lignin and Flavonoid/Anthocyanin Pathways as Demonstrated by the Activity of Peroxidase 27**
- **4.5 Candidate Genes Putatively Correlated with Phenolics Accumulation in Strawberry Fruit**
  - **4.5.1 Selection of Candidates**
  - **4.5.2 Effects on Metabolites**
- **4.6 Acylphloroglucinol Biosynthesis in Strawberry Fruit**
  - **4.6.1 Downregulation of CHS/VPS Activity**
  - **4.6.2 Isotope Labelling Experiment**
- **4.7 Glucosylation of Acylphloroglucinols**
  - **4.7.1 Total In Vitro Synthesis of Strawberry APG Glucosides**
  - **4.7.2 Downregulation of UGT71K3 in Strawberry Fruit**
  - **4.7.3 Promiscuous Activity as an Anthocyanidin Glucosyltransferase**
- **4.8 Conclusion**

References
5 Dietary (Poly)Phenols and Vascular Health 127
Christine Morand, Nicolas Barber-Chamoux, Laurent-Emmanuel Monfoulet, and Dragan Milenkovic
5.1 Introduction 127
5.2 Vascular Health: A Prerequisite to Prevent Cardiometabolic Diseases and Cognitive Decline 128
5.2.1 Vascular Function and Cardiometabolic Diseases 128
5.2.2 Vascular Function and Cognitive Decline 130
5.3 Diet and Vascular Health 130
5.4 (Poly)Phenols: A Major Family of Dietary Plant Bioactive Compounds 131
5.5 Fate of (Poly)Phenols in the Body and Biological Activities 133
5.6 Nutritional Effects of Flavonoids in Protecting Cardiovascular Health 135
5.7 Limitation of Knowledge and Strategy for Research 138
5.8 Findings from Translational Research on Citrus Flavanones and Vascular Health 139
5.9 Conclusion 142
References 142

6 Cellular-Specific Detection of Polyphenolic Compounds by NMR-and MS-Based Techniques: Application to the Representative Polycyclic Aromatics of Members of the Hypericaceae, the Musaceae and the Haemodoraceae 149
Dirk Hölscher
6.1 Introduction 149
6.2 The Plant Genus Hypericum 150
6.3 Phenylphenalenones: Plant Secondary Metabolites of the Haemodoraceae 151
6.4 Phenalenone-Type Phytoalexins 157
6.5 Laser Microdissection and Cryogenic NMR as a Combined Tool for Cell Type-Specific Metabolite Profiling 160
6.6 Matrix-free UV Laser Desorption/Ionization (LDI) at the Single-Cell Level: Distribution of Secondary Metabolites of Hypericum Species 163
6.7 LDI-MSI-Based Detection of Phenalenone-Type Phytoalexins in a Banana–Nematode Interaction 166
6.8 LDI-FT-ICR-MSI Reveals the Occurrence of Phenylphenalenones in Red Paracytic Stomata 169
6.9 Conclusion 171
6.10 Acknowledgements 171
References 171

7 Metabolomics Strategies for the Dereplication of Polyphenols and Other Metabolites in Complex Natural Extracts 183
Jean-Luc Wolfender, Pierre-Marie Allard, Miwa Kubo, and Emerson Ferreira Queiroz
7.1 Introduction 183
7.2 Metabolite Profiling and Metabolomics 184
7.2.1 Resolution and Throughput Improvement of Metabolite Profiling Methods 185
7.3 Metabolite Annotation and Dereplication 188
7.4 Targeted Isolation of Original Polyphenols 198
7.5 Conclusion 201
References 201
8 Polyphenols from Plant Roots: An Expanding Biological Frontier 207
Ryosuke Munakata, Romain Larbat, Léonor Duriot, Alexandre Olyr, Carole Gavira, Benoit Mignard, Alain Hehn, and Frédéric Bourgaud
8.1 Introduction 207
8.2 Polyphenols in Roots versus Shoots: Not More, Not Less, But Often Different 207
8.2.1 Examples of Root-Specific Polyphenols 209
8.2.2 Phenolics in Roots: General Evolutionary Context, Distribution and Translocation 211
8.3 Allelochemical Functions of Root Polyphenols 213
8.3.1 Plant–Microbe Interactions 213
8.3.2 Plant–Nematode and Plant–Insect–Interactions 215
8.3.3 Plant Allelopathy 216
8.4 Physiological Functions of Root Polyphenols in Plants 217
8.4.1 Inhibition of Auxin Transport 218
8.4.2 Nutrient Uptake in the Rhizosphere 219
8.4.3 Detoxifying Agents (i.e. Antioxidizing Agent) 219
8.5 Biotechnologies to Produce Root Polyphenols 220
8.5.1 Production of Valuable Polyphenols in Plant Cell/Tissue Culture 220
8.5.2 Production of Valuable Root Polyphenols in Organ Culture Systems 221
8.5.3 Production of Polyphenols by Aeroponic/Hydroponic Cultivation Systems 224
8.5.4 Metabolic Engineering for the Production of Root Polyphenols 224
8.6 Conclusion 227
References 227

9 Biosynthesis of Polyphenols in Recombinant Micro-organisms: A Path to Sustainability 237
Kanika Sharma, Jian Zha, Sonam Chouhan, Sanjay Guleria, and Mattheos A.G. Koffas
9.1 Introduction 237
9.2 Flavonoids 239
9.2.1 Biosynthesis of Flavonoids and their Derivatives 242
9.2.2 Metabolic Engineering of Flavonoids and their Derivatives 243
9.3 Stilbenes 247
9.3.1 Biosynthesis of Resveratrol and its Derivatives 247
9.3.2 Metabolic Engineering of Resveratrol and its Derivatives 248
9.4 Coumarins 251
9.4.1 Biosynthesis of Coumarins 251
9.4.2 Metabolic Engineering of Coumarins 251
9.5 Conclusion 253
References 254

10 Revisiting Wine Polyphenols Chemistry in Relation to Their Sensory Characteristics 263
Victor de Freitas
10.1 Introduction 263
10.2 Astringency of Polyphenols 265
13 How to Model a Metabolon: Theoretical Strategies 363
Julien Diharce and Serge Antonczak
13.1 Introduction 363
13.2 Localization 364
13.3 Existing Structures 365
13.4 Three-Dimensional Structures of Enzymes: Homology Modelling 367
13.5 Modes of Access to Active Sites: Randomly Accelerated Molecular Dynamics 370
13.6 Protein–Protein Association: Protein–Protein Docking 372
13.7 Substrate Channelling and Molecular Dynamics 374
13.8 Metabolon 378
13.9 Conclusion 379
References 381

Index 387