Contents

Preface xv

1 Polymer Nanocomposites and Coatings: The Game Changers 1
 Gaurav Verma
 1.1 Introduction 1
 1.2 Polymer Nanocomposites 4
 1.2.1 Types of Polymer Nanocomposites: Processing 4
 1.2.1.1 Equipment and Processing 7
 1.2.2 Polymer Property Enhancements 9
 1.2.3 Polymer Nanocomposite Structure and Morphology 10
 1.2.4 Characterization of Polymer Nanocomposites 11
 1.2.4.1 Morphological Testing 12
 1.2.4.2 Spectral Testing 14
 1.2.4.3 Testing 15
 1.2.5 Applications 16
 1.2.5.1 Nanocomposite Coatings: Focus PU-Clay Coatings 17
 1.3 Conclusions 18
 Acknowledgments 19
 References 19

2 DGEBA Epoxy/CaCO₃ Nanocomposites for Improved Chemical Resistance and Mechanical Properties for Coating Applications 23
 Manoj Kumar Shukla, Archana Mishra, Kavita Srivastava, A K Rathore and Deepak Srivastava
 2.1 Introduction 24
 2.2 Experimental 26
 2.2.1 Preparation of Epoxy/CaCO₃ Nanocomposites 26
 2.2.2 Preparation of Panels 27
 2.2.3 Preparation of Reagents for Chemical Resistance 27
2.2.3.1 Artificial Seawater (ASW) 27
2.2.4 Preparation of Films 28
2.3 Characterization of Epoxy/CaCO₃ Nanocomposite 28
 2.3.1 Fourier Transform Infrared (FTIR) Spectra 28
 2.3.2 Mechanical Properties 28
 2.3.2.1 Impact Resistance 28
 2.3.2.2 Scratch Hardness 29
 2.3.2.3 Adhesion and Flexibility Test 29
 2.3.2.4 Chemical Resistance Test 29
 2.3.2.5 Morphological Properties 29
2.4 Results and Discussion 30
 2.4.1 FTIR Spectroscopic Analysis 30
 2.4.2 Studies on Mechanical Properties 32
 2.4.2.1 Impact Resistance 32
 2.4.2.2 Studies of Scratch Hardness 35
 2.4.2.3 Adhesion and Flexibility Test (Mandrel Bend Test) 36
 2.4.3 Studies on Chemical Resistance 37
 2.4.4 Morphological Studies 38
2.5 Conclusion 41
References 42

3 An Industrial Approach to FRLS (Fire Retardant Low Smoke) Compliance in Epoxy Resin-Based Polymeric Products 45
Hari R and Sukumar Roy
 3.1 Introduction 46
 3.1.1 Incorporation of Additives 47
 3.2 Experimental 49
 3.3 Characterization, Results and Discussion 53
 3.4 Conclusion 57
Acknowledgments 58
References 58

4 Polymer-Based Organic Solar Cell: An Overview 59
Neha Patni, Pranjal Sharma, Mythilypriya Suresh, Birendrakumar Tiwari and Shibu G. Pillai
 4.1 Introduction 60
 4.2 Polymer Solar Cells: An Insight 61
 4.2.1 Why Polymer Solar Cells are Preferable 62
 4.3 Layer Stack Construction of Polymer Solar Cells 62
 4.4 Simple Working of a Polymer Solar Cell 63
4.5 Life-Cycle Analysis (LCA) 63
4.6 Current Condition of Polymer Solar Cells 64
4.7 Materials Used for Developing PSC 65
 4.7.1 Synthesis of Polymer Materials 65
 4.7.1.1 Stille Cross-Coupling 66
 4.7.1.2 Suzuki Cross-Coupling 66
 4.7.1.3 Direct Arylation Polymerization 66
 4.7.1.4 Polymerization Rates 67
 4.7.2 Conjugated Polymers 67
 4.7.3 Side-Chain Influence in Polymers 68
 4.7.4 Purification 69
4.8 Degradation and Stability of a PSC 69
 4.8.1 Physical Degradation 69
 4.8.1.1 Morphological Stability 69
 4.8.1.2 Flexibility and Delamination 70
 4.8.2 Chemical Degradation 70
 4.8.2.1 Polymer Instability 70
 4.8.2.2 Photochemical Degradation 71
4.9 Dyes 72
 4.9.1 Natural Dyes Used for Polymer Solar Cells 73
4.10 Performed Experiments 75
 4.10.1 Experimental Setup 1 75
 4.10.2 Experimental Setup 2 77
4.11 Summary 78
References 79

5 A Simple Route to Synthesize Nanostructures of Bismuth Oxyiodide and Bismuth Oxychloride (BiOI/BiOCl) Composite for Solar Energy Harvesting 83
I. D. Sharma, Chander Kant, A. K. Sharma, Ravi Ranjan Pandey and K. K. Saini
5.1 Introduction 83
 5.1.1 Bismuth Oxyhalide [BiOX (X = Cl, Br, I)]: General Remarks 87
 5.1.2 Synthesis of Bismuth Oxyhalide 89
5.2 Photocatalytic Activity Measurements 91
5.3 Results and Discussion 91
5.4 Conclusion 96
Acknowledgments 97
References 98
6 Investigation of DC Conductivity, Conduction Mechanism and CH₄ Gas Sensor of Chemically Synthesized Polyaniline Nanofiber Deposited on DL-PLA Substrate

Muktikanta Panigrahi, Debabrat Pradhan, Subhasis Basu Majumdar and Basudam Adhikari

6.1 Introduction
6.2 Experimental Details
6.2.1 Preparation of Desired Materials
6.2.2 Characterization of DL-PLA Films and DL-PLA/PANI-ES Composites
6.3 Results and Discussion
6.3.1 Scanning Electron Microscopic (SEM) Analysis
6.3.2 Attenuated Total Reflectance Fourier Transformation Infrared (ATR-FTIR) Spectroscopic Analysis
6.3.3 Ultraviolet Visible (UV-Vis) Absorption Spectroscopic Analysis
6.3.4 DC Electrical Analysis
6.4 Conclusion

Acknowledgments
References

7 Electrical Properties of Conducting Polymer-MWCNT Binary and Hybrid Nanocomposites

B.T.S. Ramanujam and S. Radhakrishnan

7.1 Introduction
7.1.1 Theoretical Background of Electrical Conductivity in CPCs
7.1.2 Factors Affecting Electrical Percolation Threshold
7.1.3 Processing Methods of CPCs
7.1.4 Conduction Mechanism in CPCs
7.1.5 Multiwalled Carbon Nanotube (MWCNT) – Potential Conducting Filler
7.1.5.1 Synthesis Methods of Carbon Nanotubes
7.1.6 Electrical Properties of Polymer-MWCNT Composites

7.2 AC/DC Properties of Polyethersulfone (PES)-MWCNT, PES-Graphite-MWCNT Nanocomposites
7.2.1 Material Properties
7.2.2 Composite Preparation 135
7.3 Discussion of Results 136
 7.3.1 Electrical Behavior of Polyethersulfone (PES)-MWCNT Binary and PES-Graphite-MWCNT Hybrid Composites 136
 7.3.2 Transmission Electron Microscopy (TEM) Analysis 138
7.4 Conclusion and Future Perspectives 139
Acknowledgment 141
References 141

8 Polyaniline-Based Sensors for Monitoring and Detection of Ammonia and Carbon Monoxide Gases 145
 Neha Patni, Neha Jain and Shibu G. Pillai
 8.1 Introduction 145
 8.2 Conducting Polymers 146
 8.2.1 Polyaniline 147
 8.2.1.1 Structure of Polyaniline 148
 8.2.1.2 Properties of Polyaniline 148
 8.3 Ammonia Detection 149
 8.3.1 Sources of Ammonia 149
 8.3.2 Experiment: Ammonia Sensor 153
 8.4 Carbon Monoxide (CO) Detection 154
 8.4.1 Common Sources of CO 154
 8.4.2 Sensors Used for Detection of CO 155
 8.5 Conclusion 158
References 159

9 Synthesis and Characterization of Luminescent La$_2$Zr$_2$O$_7$/Sm$^{3+}$ Polymer Nanocomposites 163
 Pramod Halappa and C. Shivakumara
 9.1 Introduction 164
 9.1.1 Luminescence 165
 9.1.2 Photoluminescence 165
 9.1.2.1 Fluorescence 165
 9.1.2.2 Delayed Fluorescence or Phosphorescence 167
 9.1.2.3 Jablonski Diagram 167
 9.1.2.4 Phosphors 169
 9.1.2.5 Photoluminescence of Samarium Ion (Sm$^{3+}$) 173
 9.1.3 Scope and Objectives of the Present Study 173
9.2 Experimental 175
 9.2.1 Synthesis of Sm$^{3+}$-Doped La$_2$Zr$_2$O$_7$ 175
 9.2.2 Preparation of PVA Polymer Thin Films 176
 9.2.3 Preparation of Sm$^{3+}$-Doped La$_2$Zr$_2$O$_7$ with PVA-Polymer Composite Films 177
 9.2.4 Characterization 177
9.3 Results and Discussion 178
 9.3.1 Structural Analysis by X-Ray Diffraction 178
 9.3.2 SEM Analysis 181
 9.3.3 UV-Vis Spectroscopy 181
 9.3.4 Thermogravimetric Analysis (TGA) 181
 9.3.5 Photoluminescence Properties 182
 9.3.6 Chromaticity Color Coordinates 184
9.4 Conclusion 186
Aknowledgment 186
References 186

10 Study of Gas Transport Phenomenon in Layered Polymer Nanocomposite Membranes 191
 A.K. Patel and N.K. Acharya
10.1 Introduction 192
 10.1.1 Transport Phenomenon 193
 10.1.2 Metal Coating 196
10.2 Experimental 196
 10.2.1 Fabrication of Nanocomposite Membrane 196
 10.2.2 Gas Permeability Test 197
10.3 Results and Discussion 199
10.4 Conclusion 203
Acknowledgment 203
References 204

11 Synthesis and Ion Transport Studies of K$^+$ Ion Conducting Nanocomposite Polymer Electrolytes 207
 Angesh Chandra, Alok Bhatt and Archana Chandra
11.1 Introduction 208
11.2 Experimental 209
11.3 Results and Discussion 210
11.4 Conclusion 216
Acknowledgment 217
References 217
12 Recent Studies in Polyurethane-Based Drug Delivery Systems 219
Archana Solanki and Sonal Thakore

12.1 Introduction 219
12.1.1 Polyurethane Chemistry: A Brief Overview 219
12.1.2 Carbohydrate Cross-Linked Polyurethanes 227
12.1.3 Biomedical Applications of PUs 229

12.2 Experimental 232
12.2.1 Impact of PU Chemistry on Drug Delivery Profiles 232
12.2.2 Drug Loading and Release Kinetics 235
12.2.3 Waterborne pH-Responsive Polyurethanes 236

12.3 Conclusion 240
References 240

13 Synthesis and Characterization of Polymeric Hydrogels for Drug Release Formulation and Its Comparative Study 245
Nisarg K. Prajapati, Nirmal K. Patel and Vijay Kumar Sinha

13.1 Introduction 246

13.2 Materials and Method 246
13.2.1 Preparation of Sodium Salt of Partly Carboxylic Propyl Starch (Na-PCPS) 246
13.2.2 Preparation of 2-Hydroxy-3-((2-hydroxypropanoyl)oxy)propyl acrylate 247
13.2.3 Graft Copolymerization with PCPS-g-2-hydroxy-3-((2-hydroxypropanoyl)oxy) propyl acrylate (HPA) 247
13.2.4 Drug Loading in Polymeric Binder 248
13.2.5 Preparation of Matrix Tablets 249
13.2.6 In-Vitro Dissolution Studies of Tablet 250

13.3 Result and Discussion 250
13.3.1 13C-NMR Spectra Analysis of 2-Hydroxy-3-((2-hydroxypropanoyl)oxy) propyl acrylate 250
13.3.2 XRD Analysis of Starch, CPS, PCPS-g-2-hydroxy-3-((2-hydroxypropanoyl)oxy) propyl acrylate (HPA) 250
13.3.3 In-Vitro Study 251

13.4 Conclusion 253
Acknowledgment 253
References 253
14 Enhancement in Gas Diffusion Barrier Property of Polyethylene by Plasma Deposited SiO_x Films for Food Packaging Applications 255

Purvi Dave, Nisha Chandwani, S. K. Nema and S. Mukherji 255

14.1 Introduction 256

14.2 Transport of Gas Molecules Through Packaging Polymers 258

14.2.1 Packaging Polymer Structure 258

14.2.2 Transport of Gas Molecules Through Semicrystalline Polymer Films 258

14.2.3 Measurement of Gas Transmission Rate Through a Packaging Film 260

14.3 Experimental 261

14.3.1 Contact Angle Measurements to Determine Film Wetting Properties 262

14.3.2 FTIR-ATR Study to Determine Film Chemistry 262

14.3.3 Film Thickness Measurement 262

14.3.4 High Resolution Scanning Electron Microscopy to Determine Film Morphology 262

14.3.5 OTR Measurement to Determine Oxygen Diffusion Barrier Property 263

14.4 Results 263

14.4.1 Observations 263

14.4.1.1 Wetting Behavior of SiO_x Films 263

14.4.1.2 Chemistry of SiO_x Film 264

14.4.1.3 Deposition Rate 264

14.4.1.4 High Resolution Scanning Electron Microscopy 265

14.4.1.5 Oxygen Transmission Rate 267

14.4.2 Discussion 267

14.5 Conclusion 271

References 272

15 Synthesis and Characterization of Nanostructured Olivine LiFePO_4 Electrode Material for Lithium-Polymer Rechargeable Battery 275

K. Rani, M. Abdul Kader and S. Palaniappan 275

15.1 Introduction 276

15.1.1 Energy Storage: Rechargeable Batteries 276

15.1.1.1 Lithium Battery 278

15.1.1.2 Comparison between Li-Polymer Battery and Liquid Battery 279
15.1.1.3 Commercial Production 280
15.1.1.4 Advantages of Lithium Polymer Batteries 281
15.1.1.5 Limitations of Lithium-Polymer Batteries 282

15.1.2 Cell Manufacturers Using Lithium Iron Phosphate 282

15.1.3 Lithium Iron Phosphate (LiFePO₄) 284
15.1.3.1 Synthesis of LiFePO₄ 286
15.1.3.2 Structure of LiFePO₄ 287
15.1.3.3 Work on LiFePO₄ Cell Systems 290

15.2 Experimental 292
15.2.1 Synthesis 292

15.3 Characterization 292

15.4 Results and Discussion 293
15.4.1 Morphology 293
15.4.2 E-DAX 294
15.4.3 Charge-Discharge Characteristics 294
15.4.4 XRD Studies on LiFePO₄ 295

15.5 Conclusion 296

Acknowledgments 297
References 298

Index 305