INDEX

acceleration factor, \(\tau \)
 definition, 45–46
 receiver, effect on, 138, 142
 aliasing, 35–37, 71. See also pulse
 allpass filter, 40, 86, 116
 antipodal event, 43
 antipodal signal bound, 43–44
 AP (a priori information). See also
 intrinsic subtraction
 in ISI-BCJR, 100
 in iterative decoding, 102, 104
 AWGN (additive white Gaussian noise),
 18, 19
 colored noise, 35
 scaling, 110–111
backup recursion, 97
backward recursion, 33
Baker’s rule, 156
bandwidth. See also spectrum
 conversion of criteria, 73, 157–158, 163
 criteria, 10
 3 dB, 10
 excess, 67–68
 general, 2–4, 8
 half power, 10
 PIB, 10–11, 157 (in CPM), 163
 POB, 10–11, 164, 178–179, 183
 wide versus narrow band, 13
 Barbieri, A., with Fertonani and Colavolpe, 142
basis. See orthogonality
 BCJR (Bahl-Cocke-Jelinek-Raviv)
 algorithm. See trellis detection
 binary entropy function, 64,
 75–76
 bit density
 in capacity calculation, 74–76
 in CPM, 157
 definition, 9, 63
 in frequency FTN, 129, 133
 in FTN, 81, 111–113
 PSD, effect of, 73
 in set-partition coding, 150
 bit energy, 5, 30
capacity
 AWGN, 59–61
 bandwidth channel, 61–63
 for BER, 64–68, 73–74
 constrained, 59–61
 for CPM, 157–160
 for linear modulation, 68–72
 for PSD, 64–68
INDEX

Shannon limit calculation, 63, 73–77
of square PSD, 65
for time-frequency FTN, 76–77, 132–134
CC characteristic, 84, 103–109
CC lines, 111–113
channel model. See also phase; receiver
AWGN, 18–19
for FTN, 82, 86–88, 115–116
minimum distance of, 37–43
precursor, 86, 115–116
tail, 86
channel shortening, 93
channel use, 59
in frequency FTN, 132
coded modulation. See CPM; set-partition
coding
coding. See also convolutional codes;
CPM; set-partition codes
definition, 13–14
general, 3–4, 13–15
LDPC, 142–143
modulation, compared to, 13–14
parity-check, 13–14
semisystematic, 107
colored noise receiver. See Receiver
correlation factor, \(\rho \), convolutional code,
103–109, 117–120
correlator receiver. See Receiver
CPFSK (continuous-phase frequency-shift
keying). See modulation
CPM (continuous phase modulation)
signaling
coded, 153, 158–160
distance, 156
error performance, 158–160
general, 153–160
rate of, 157
Shannon limit, 157–160
spectrum, 155–156
Darwazeh, I., 140
Dasalukunte, D., 140
decision depth. See trellis detection
decision region. See distances
delay, of pulse. See frequency FTN
difference sequence. See distance
distance. See also Mazo limit
antipodal, 43–44
calculation, 38, 50–54
critical, 49
decision regions, 21
difference sequence, 38, 134
equivalent, in BCJR, 99–100
error events, 37–38, 43–47, 134
escaped, 48–50,
181–182
free, 116–122
in frequency FTN, 134–136
FTN model for, 115–116
minimum, of channel, 37–43
minimum, of 2 signals, 21–23
of modulations, 21–22, 50–54
normalized, 20
optimal distance pulses,
180–181
Douillard, C., 83
EER (event error rate). See error rates
equalizers, 31, 80, 142
equivalent distance, in BCJR. See distance
error events. See distance
error family, 137
error probability. See also distance
calculation of, 54–55, 90
Gaussian, 20
of modulations, 21–24
error rates
BCJR, 84–85, 100–101, 105
of bits (BER), 54
of events (EER), 43, 90
measurement of, 54–55
of symbols (SER), 47
error spectra, 48–50, 181–182
escaped distance. See distance
excess bandwidth. See bandwidth
excess phase, in CPM,
153–154
extrinsic information, 84
Falconer, D.D., with Magee, 93
FTN (faster than Nyquist) signaling. See also frequency FTN
capacity for, 81
channel model, 82, 86, 115–116
classical FTN, 80–82
coded, 82–85, 88, 101–110, 117–122
definitions, 45–46, 81
distance calculation, 52
with LDPC, 142–143
occupancy, 172–175
receiver for, 82
spectrum, 81–82
with Said pulses, 183–185
Fettweis, G., 142
folded spectrum. See spectrum
forward recursion, 33
fractional sampling, 30
frequency FTN. See also FTN
definition, 128–133
delay, of pulse, 135
distance, 134–136
Mazo limit, 136–138
occupancy, 172–175
receivers, 138–142
Shannon limit, 131–134, 140
subcarriers, 128
synchronous, 135, 138
time-frequency reference, 128–129,
172–173
frequency squeeze factor ϕ
definition, 128–129
receivers, effect on, 138, 142
Gauss pulse, 142, 169–170
Mazo limit, 176–177
occupancy, 169–170, 172, 175
generator, 27, 32, 80
convolutional code definition, 117–120
GFDM (generalized frequency-division multiplexing), 142
Gibby-Smith condition, 36, 71
Gram-Schmidt procedure, 19, 29–30
receiver, 141
Gray map, 108, 120–123
half power frequency, 10. See also bandwidth
Hirt, W., with Massey, 68–69
Hz-s (hertz-second), 9
in-phase signal, 6, 129–133
intrinsic subtraction, 96–98, 103, 110
IOTA (isotropic orthogonal transform
algorithm) pulse, 140,
170–172
irrelevance, theorem, 19
ISI characteristic, 85, 99–101
iterative decoding, 82–86, 105, 110–113,
138
Kotelnikov, V.A., 18
LDPC (low density parity-check codes).
See coding
Lender, A., with Kretzmer, 80
Lindell, G., 159–160
linear modulation, 5
capacity, defined, 68–72
linear programming. See Said pulse
LLR (log-likelihood ratio), 34, 98,
102
M-algorithm, 80, 93–94
map, 3:2, 122
MAP (maximum a posteriori) receiver. See receiver
master constellation, 147–148
matched filter bound. See antipodal signal bound
max-log-MAP algorithm, 34–35
Mazo, J., 45, 80
Mazo limit, 45 (definition), 80, 95
in frequency FTN, 136, 138
Gauss pulse, 176–177
Said pulse, 184
minimum distance. See distance
ML (maximum likelihood) receiver. See receiver
modulation. See also distance; linear
modulation
baseband
coding, compared to, 13
CPFSK, 154–156
definition, 3–5
high energy, 13
index, 154
ML detection of, 24
MSK, 156, 159
non-orthogonal, 25
octal, 5, 22, 61
2PAM, 5, 21, 38, 61
4PAM, 5, 22, 61
passband, 6
QAM, 146–147
QPSK, 23, 61
modulation. See also distance; linear modulation (Continued)
simple, 21, 24, 61, 71
wide versus narrow band, 13
modulation index, in CPM, 154
MSK (minimum-shift keying). See modulation
multicarrier FTN. See frequency FTN
multiplicity, of error events, 47
mutual information, 59

Nyquist pulse
criterion (NPC), 6
orthogonality, 7, 81

occupancy, Y
of FTN, 175–177
of pulse, 164–172
of signal, 172–175
OFDM (orthogonal frequency-division multiplex), 128, 131
offset, label, 89–92
optimality principle, 30
orthogonal pulse, 7–9
orthogonality
basis, orthogonal, 18, 26–27
capacity, effect on, 71–72
in frequency FTN, 129
in modulation, 21–27
orthogonalization operator, 171
OSB condition, 26 (definition), 37
OSB (orthogonal simple basis) receiver. See receiver

PAM (pulse amplitude modulation). See Modulation
partial energy function, 40
phase
minimum etc., definition, 40–41, 175
super minimum, 115
versions, 38, 52
PIB (power in band), 10 (definition). See also bandwidth
POB (power out of band), 10 (definition). See also bandwidth
Prša, A., 93
PRS (partial response signaling), 27, 80
in CPM, 154–155
PSD (average power spectral density), 11–12 (definition). See also Spectrum
PSWF (prolate spheroidal wave function) definition, 165–166

occupancy, 164–175, 177
as pulse, 168–169
solution for, 166–168 (examples), 185–186 (program)
pulse. See also under type Gauss, RC, etc.
aliased, 35–37, 71
duality, 168–169
standard pulse, 168, 173
QAM (quadrature amplitude modulation). See Modulation
Q function (definition), 21
QPSK (quadrature phase-shift keying). See Modulation
quadrature signal, 6, 129–133

rate
of code, 14
in CPM, 157
in frequency FTN, 132–133
in FTN, 105, 107, 110
in set-partition coding, 148
receiver. See also iterative decoding; SIC; trellis detection
chips, 140–141
OSB, 26 (definition), 37, 41–43, 53, 82
correlator, 27–28
fractional sampling, 30
Gram-Schmidt, 29–30
MAP, 18, 20, 84
matched filter, 28, 36–37, 41–43
ML, 18, 20, 99–100
ML, for modulation, 24–27
OSB, 26 (definition), 37, 41–43, 53, 82
vector, 20
reduced search. See trellis detection
reduced trellis. See trellis detection
residual, in M-BCJR, 96–97
Robertson, P., 35
root RC (raised cosine) pulse
definition, 7–9
occupancy, 169, 174–175, 177
Shannon limit with, 66–68
spectrum, 8, 183
Rusek, F., 93, 139

Said, A., 38, 81, 177
Said pulse
error performance, 183–185
linear program solution, 178–180
optimal pulses, 180–181, 187–188
sampling theorem, 25–27
scale factor, AWGN, 110–111
SEFDM (spectrally efficient frequency-division multiplex), 140–141
semisystematic code. See convolutional codes
SER (symbol error rate). See error rates
Seshadri, N., 48, 80
Set-partition coding
definition, 146–147
distance in, 147–149
error performance, 151–153
Shannon limit, 150–151, 153
spectrum and rate, 150
Shannon, C.E., 2, 14, 18, 60
SIC (successive interference cancelation), 31, 138–142
signal space, 18–20
sinc pulse, 7 (definition), 12, 61, 80, 174
Slepian, D., 61, 165
Slepian’s problem, 131, 164–170
slope, convolutional code, 102–109
(analysis), 117–122
soft information, 84
spectral antisymmetry, 6, 65, 72
spectral factorization, 41
sphere. See also bandwidth
in CPM, 155–157
definition, 11
error event, 48–50, 182
feature, of PSD, 73
folded, 35–36, 69
for FTN, 82, 87–88
for linear modulation, 12
PSD, 11–12
of PSWF, 168
for set-partition coding, 150
of Said pulses, 183, 178–179
sphere decoder, 31, 141–142
subset selector, 147–149
super minimum phase, 115
symbol energy, 6 (definition)
synchronous FTN. See frequency FTN

TCM (trellis-coded modulation). See set-partition coding
Theorem, 2WT, 14, 61–62, 67–68, 128
threshold, iterative, 84
trellis detection. See also M-algorithm;
receiver
BCJR, 31–35, 91–92
branch labels, 89–92, 117–122
for continuous signals, 31
decision depth, 30, 87, 97
definition, 29–30
M-BCJR, 94–98, 111–113
max-log-MAP, 35
one-way BCJR, 96
reduced search, 30, 93–98, 156
reduced trellis, 30, 89–93
residual BCJR, 97
sphere decoder, 31, 141–142
tail offset BCJR, 91–92
time offset BCJR, 92–93
tunnel, iterative, 85, 102, 105–110
turbo equalization, 82
Ungerboeck, G., 146
Ungerboeck rules, 148
unit circle, 38–40, 52, 86

VA (Viterbi algorithm), 30, 89–91.
See also trellis detection
in CPM, 156
in set-partition coding, 150
Viterbi, A.J., 30
whitened matched filter, 28–29, 36–37, 41–43
Zero sum, 49
Zhang, W., with Schlegel, 152–153