List of Contributors

Preface

1 Overview of Nano- and Microencapsulation for Foods

Hae-Soo Kwak

1.1 Introduction 1
1.2 Nano- or microencapsulation as a rich source of delivery of functional components 3
1.3 Wall materials used for encapsulation 3
1.4 Techniques used for the production of nano- or microencapsulation of foods 4
1.5 Characterization of nano- or microencapsulated functional particles 5
1.6 Fortification of foods through nano- or microcapsules 6
1.7 Nano- or microencapsulation technologies: industrial perspectives and applications in the food market 6
1.8 Overview of the book 8
Acknowledgments 12
References 12

Part I Concepts and rationales of nano- and microencapsulation for foods

2 Theories and Concepts of Nano Materials, Nano- and microencapsulation

Jingyuan Wen, Guanyu Chen, and Raid G. Alany

2.1 Introduction 17
2.2 Materials used for nanoparticles, nano- and microencapsulation
2.2.1 Polymers 19
2.3 Nano- and microencapsulation techniques
2.3.1 Chemical methods 20
2.3.2 Physico-chemical methods 23
2.3.3 Other methods 25
2.3.4 Factors influencing optimization 28
2.4 Pharmaceutical and nutraceutical applications
2.4.1 Various delivery routes for nano- and microencapsulation systems 30
5.4.2 Precipitation 107
5.4.3 Desolvation 108
5.4.4 Ionic gelation 109
5.5 Application of the encapsulation system in food ingredients 109
5.6 Conclusion 110
References 110

Part II Nano- and microencapsulations of food ingredients 117

6 Nano- and Microencapsulation of Phytochemicals 119
Sung Je Lee and Marie Wong
6.1 Introduction 119
6.2 Classification of phytochemicals 120
6.2.1 Flavonoids 120
6.2.2 Carotenoids 124
6.2.3 Betalains 126
6.2.4 Phytosterols 127
6.2.5 Organosulfurs and glucosinolates 128
6.3 Stability and solubility of phytochemicals 129
6.4 Microencapsulation of phytochemicals 130
6.4.1 Spray-drying 131
6.4.2 Freeze-drying 135
6.4.3 Liposomes 136
6.4.4 Coacervation 138
6.4.5 Molecular inclusion complexes 141
6.5 Nanoencapsulation 146
6.5.1 Nanoemulsions 147
6.5.2 Nanoparticles 148
6.5.3 Solid lipid nanoparticles (SLN) 150
6.5.4 Nanoparticles through supercritical anti-solvent precipitation 152
6.6 Conclusion 153
References 153

7 Microencapsulation for Gastrointestinal Delivery of Probiotic Bacteria 167
Kasipathy Kailasapathy
7.1 Introduction 167
7.2 The gastrointestinal (GI) tract 169
7.2.1 Microbiota of the adult GI tract 169
7.2.2 Characteristics of the GI tract for probiotic delivery 170
7.3 Encapsulation technologies for probiotics 173
7.4 Techniques for probiotic encapsulation 175
7.4.1 Microencapsulation (ME) in gel particles using polymers 175
7.4.2 The extrusion technique 175
7.4.3 The emulsion technique 177
7.4.4 Spray-drying, spray-coating and spray-chilling technologies 179
7.4.5 Microencapsulation technologies for nutraceuticals incorporating probiotics 182
7.5 Controlled release of probiotic bacteria 182
7.6 Potential applications of encapsulated probiotics 183
7.6.1 Yoghurt 184
7.6.2 Cheese 185
CONTENTS

7.6.3 Frozen desserts 186
7.6.4 Unfermented milks 186
7.6.5 Powdered formulations 187
7.6.6 Meat products 187
7.6.7 Plant-based (vegetarian) probiotic products 188

7.7 Future trends and marketing perspectives 189
References 191

8 Nano-Structured Minerals and Trace Elements for Food and Nutrition Applications 199
Florentine M. Hilty and Michael B. Zimmermann

8.1 Introduction 199
8.2 Special characteristics of nanoparticles 200
8.3 Nano-structured entities in natural foods 202
8.4 Nano-structured minerals in nutritional applications 202
8.4.1 Iron 202
8.4.2 Zinc 207
8.4.3 Calcium 209
8.4.4 Magnesium 210
8.4.5 Selenium 211
8.4.6 Copper 211
8.5 Uptake of nano-structured minerals 212
8.6 Conclusion 213
References 214

9 Nano- and Microencapsulation of Vitamins 223
Ashok R. Patel and Bhesh Bhandari

9.1 Introduction 223
9.2 Vitamins for food and nutraceutical applications 224
9.2.1 Vitamins: nutritional requirement and biological functions 224
9.2.2 Vitamins: formulation challenges and stability issues 224
9.3 Colloidal encapsulation (nano and micro) in foods: principles of use 227
9.3.1 Solid-in-liquid dispersions 229
9.3.2 Liquid-in-liquid dispersions 232
9.3.3 Dispersions of self-assembled colloids 234
9.3.4 Encapsulation in dry matrices 238
9.3.5 Molecular encapsulation of vitamins in cyclodextrins 239
9.4 Conclusion and future trends 240
References 241

10 Nano- and Microencapsulation of Flavor in Food Systems 249
Kyuya Nakagawa

10.1 Introduction 249
10.2 Flavor stabilization in food nano- and microstructures 250
10.2.1 Application of encapsulated flavors 250
10.2.2 Interactions between flavor compounds and carrier matrices 251
10.2.3 Flavor retention in colloidal systems 251
10.2.4 Flavor retention in food gel 252
10.2.5 Flavor inclusion in starch nanostructure 253
CONTENTS

10.3 Flavor retention and release in an encapsulated system
- 10.3.1 Mass transfer at the liquid–gas interface 254
- 10.3.2 Mass transfer at a solid–gas interface 258

10.4 Nano- and microstructure processing
- 10.4.1 Spray-drying 260
- 10.4.2 Freeze-drying 262
- 10.4.3 Complex coacervation 264

10.5 Conclusion
Acknowledgements 267
References 267

11 Application of Nanomaterials, Nano- and Microencapsulation to Milk and Dairy Products 273

Hae-Soo Kwak, Mohammad Al Mijan, and Palanivel Ganesan

11.1 Introduction 273

11.2 Milk
- 11.2.1 Microencapsulation of functional ingredients 274
- 11.2.2 Microencapsulation of vitamins 278
- 11.2.3 Microencapsulation of iron 279
- 11.2.4 Microencapsulation of lactase 281
- 11.2.5 Nanofunctional ingredients 285
- 11.2.6 Nanocalcium 287

11.3 Yogurt
- 11.3.1 Microencapsulation of functional ingredients 287
- 11.3.2 Microencapsulation of iron 288
- 11.3.3 Nanofunctional ingredients 289

11.4 Cheese
- 11.4.1 Microencapsulation for accelerated cheese ripening 291
- 11.4.2 Microencapsulation of iron 292
- 11.4.3 Nanopowdered functional ingredients 292

11.5 Others
- 11.5.1 Microencapsulation of iron 293

11.6 Conclusion 293
References 294

12 Application of Nano- and Microencapsulated Materials to Food Packaging 301

Loong-Tak Lim

12.1 Introduction 301

12.2 Nanocomposite technologies
- 12.2.1 Layered silicate nanocomposites 302
- 12.2.2 Mineral oxide and organic nanocrystal composites 305
- 12.2.3 Material properties’ enhancement of biodegradable/compostable polymers 306

12.3 Intelligent and active packaging based on nano- and microencapsulation technologies
- 12.3.1 Product quality and shelf-life indicators 307
- 12.3.2 Nano- and microencapsulated antimicrobial composites 312
- 12.3.3 TiO₂ ethylene scavenger for shelf-life extension of fruits and vegetables 317

12.4 Conclusion 318
References 319
Part III Bioactivity, toxicity, and regulation of nanomaterial, nano- and microencapsulated ingredients 325

13 Controlled Release of Food Ingredients 327

Sanghoon Ko and Sundaram Gunasekaran

13.1 Introduction 327
13.2 Fracturation 328
13.3 Diffusion 329
13.4 Dissolution 331
13.5 Biodegradation 333
13.6 External and internal triggering
 13.6.1 Thermosensitive 334
 13.6.2 Acoustic sensitive 336
 13.6.3 Light-sensitive 337
 13.6.4 pH-sensitive 338
 13.6.5 Chemical-sensitive 339
 13.6.6 Enzyme-sensitive 339
 13.6.7 Other stimuli 340
13.7 Conclusion 340
References 340

14 Bioavailability and Bioactivity of Nanomaterial, Nano- and Microencapsulated Ingredients in Foods 345

Soo-Jin Choi

14.1 Introduction 345
14.2 Bioavailability of nano- and microencapsulated phytochemicals 347
14.3 Bioavailability of other nano- and microencapsulated nutraceuticals 352
14.4 Bioavailability of nano- and microencapsulated bioactive components 355
14.5 Conclusion 357
References 358

15 Potential Toxicity of Food Ingredients Loaded in Nano- and Microparticles 363

Guanyu Chen, Soon-Mi Shim, and Jingyuan Wen

15.1 Introduction 363
15.2 Factors influence the toxicity of nano- and microparticles
 15.2.1 Size of the nano- and microparticles 365
 15.2.2 Shape of the nano- and microparticles 366
 15.2.3 Solubility of the nano- and microparticles 367
 15.2.4 Chemical composition of the nano- and microparticles 367
15.3 Behavior and health risk of nano- and microparticles in the gastrointestinal (GI) tract
 15.3.1 Absorption 370
 15.3.2 Distribution 371
 15.3.3 Excretion/elimination 371
15.4 Toxicity studies of nano- and microparticles
 15.4.1 Oral exposure studies for toxicity 371
 15.4.2 In vitro studies for toxicity 372
 15.4.3 Lack of an analytical method model to evaluate the safety of micro- and nanoparticles 373
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.5 Risk assessment of micro- and nanomaterials in food applications</td>
<td>374</td>
</tr>
<tr>
<td>15.5.1 Risk assessment</td>
<td>375</td>
</tr>
<tr>
<td>15.6 Conclusion</td>
<td>377</td>
</tr>
<tr>
<td>References</td>
<td>377</td>
</tr>
<tr>
<td>16 Current Regulation of Nanomaterials Used as Food Ingredients</td>
<td>383</td>
</tr>
<tr>
<td>Hyun-Kyung Kim, Jong-Gu Lee, and Si-Young Lee</td>
<td></td>
</tr>
<tr>
<td>16.1 Introduction</td>
<td>383</td>
</tr>
<tr>
<td>16.2 The European Union (EU)</td>
<td>384</td>
</tr>
<tr>
<td>16.2.1 Definition</td>
<td>384</td>
</tr>
<tr>
<td>16.2.2 The EFSA Guidance</td>
<td>385</td>
</tr>
<tr>
<td>16.2.3 Regulation</td>
<td>386</td>
</tr>
<tr>
<td>16.3 The United Kingdom (UK)</td>
<td>388</td>
</tr>
<tr>
<td>16.4 France</td>
<td>389</td>
</tr>
<tr>
<td>16.5 The United States of America (USA)</td>
<td>389</td>
</tr>
<tr>
<td>16.6 Canada</td>
<td>391</td>
</tr>
<tr>
<td>16.7 Korea</td>
<td>392</td>
</tr>
<tr>
<td>16.8 Australia and New Zealand</td>
<td>393</td>
</tr>
<tr>
<td>References</td>
<td>393</td>
</tr>
<tr>
<td>Index</td>
<td>395</td>
</tr>
</tbody>
</table>