Contents

Contributors xv
Preface xvii
About the Editors xix

1 Functional Foods, Nutraceuticals, and Disease Prevention: A Window to the Future of Health Promotion 3
Gopinadhan Paliyath and Kalidas Shetty

1.1 Chronic Degenerative Diseases in Modern Society: Implications on Life Quality, Productivity, Economic Burden 3
1.1.1 Diet and lifestyle changes: the missing foods 3
1.1.2 Social and economic burden of chronic degenerative diseases 4

1.2 Health Regulatory Properties of Foods: “Prevention Is Better Than Cure” 5
1.2.1 Fruit and vegetable consumption and disease prevention 6
References 8

2 Functional Foods and Nutraceuticals 11
Chung-Ja C. Jackson and Gopinadhan Paliyath

2.1 Introduction 11
2.2 Definition of Functional Foods and Nutraceuticals 12
2.2.1 Effects of functional foods and nutraceuticals on major chronic diseases 16
2.3 Sources and Biological Effects of Functional Foods and Nutraceuticals in Nature 19
2.3.1 Flaxseed (Linum usitatissimum) 20
2.3.2 Phytoestrogens 21
2.3.3 Tomatoes 21
2.3.4 Garlic (Allium sativum) 21
2.3.5 Cruciferous vegetables 22
2.3.6 Citrus fruits 22
2.3.7 Cranberry 23
2.3.8 Tea 23
2.3.9 Wine and grapes 24
2.3.10 Chocolate 24
2.3.11 Fish 25
2.3.12 Dairy products 25
2.3.13 Carbohydrates 26
2.3.14 Meat 26
2.3.15 Vitamins 26
2.3.16 Minerals 27

2.4 Functional Foods and Nutraceuticals: Health Claims and Benefits 27
2.4.1 Oats 27
2.4.2 Psyllium 27
2.4.3 Soybeans 28
2.4.4 Phytosterols 29
2.4.5 Fiber 29
2.4.6 D-Tagatose 29

2.5 Qualified Health Claims 29
2.5.1 Selenium and cancer 29
2.5.2 Antioxidant vitamins and cancer 30
2.5.3 Nuts (e.g., walnuts) and heart disease 30
2.5.4 Omega-3 fatty acids and CHD 30
2.5.5 Phosphatidylserine/Phosphatidylcholine and cognitive dysfunction and dementia 30
2.5.6 Folic acid and neural tube birth defects 30

2.6 Functional Foods and Nutraceuticals: Safety Issues 30
2.6.1 Echinacea 31
2.6.2 Ephedra (also called “ma huang, herbal ecstasy, or mahuanggen”) 31
2.6.3 Feverfew 31
2.6.4 Garlic 31
2.6.5 Ginger 32
2.6.6 *Gingko biloba* 32
2.6.7 Ginseng 32
2.6.8 Kava kava products 32
2.6.9 St. John’s Wort 32

2.7 Regulation of Functional Foods and Nutraceuticals 33

2.8 Public Education and Dietary Guidance 35

2.9 Concluding Remarks 36

References 37

3 Nutritional Genomics: Fundamental Role of Diet in Chronic Disease Prevention and Control 45
Amy J. Tucker, Branden Deschambault, and Marica Bakovic

3.1 Introduction 45

3.2 Nutrigenetics 46
3.2.1 Gene polymorphisms 46
3.2.2 Single nucleotide polymorphisms (SNPs) 47
3.2.3 Nonsynonymous single nucleotide polymorphisms (nsSNPs) 47
3.2.4 Regulatory single nucleotide polymorphisms (rsSNPs) 48
3.2.5 Splice site single nucleotide polymorphisms (ssSNPs) 48
3.2.6 Trans-Acting rSNPs 48
3.3 Complexities of chronic disease research in nutrigenetics 49
3.4 Chronic Disease and Rare SNPs 50
 3.4.1 Copy number variants 50
3.5 CVD and Nutrigenetics 51
3.6 Nutrigenetics and Cancer 51
3.7 Summary of Nutrigenetic Research Potential 51
3.8 Nutriepigenetics 52
 3.8.1 Role of the epigenome 52
 3.8.2 Cause of epimutations 52
3.9 Epimutations in Chronic Disease 53
 3.9.1 Epimutations and macronutrients/micronutrients 53
 3.9.2 Epimutations and phytochemicals 54
3.10 Summary of Epigenetic Research Potential 54
3.11 Nutrigenomics 54
 3.11.1 Genomic impact of diet 55
 3.11.2 Carbohydrates and gene interactions 55
 3.12.3 Cholesterol and gene interactions 56
 3.11.4 FAs, lipids, and gene interactions 58
 3.11.5 Lipids and APOE 59
 3.11.6 Diet and APOE 60
 3.11.7 Lipids and hepatic lipase (HL) 60
 3.11.8 Diet and LIPC 61
 3.11.9 Interaction between APOE and HL 61
3.12 Vitamin A and Gene Interactions 61
 3.12.1 Dual roles of vitamin A 62
3.13 Vitamin E and Nutrigenomics 62
 3.13.1 Vitamin E and atherosclerosis 62
 3.13.2 Vitamin E and cholesterol biosynthesis 63
3.14 Vitamin D and Gene Interactions 63
 3.14.1 Vitamin D and breast cancer 63
 3.14.2 Vitamin D and FAs 64
3.15 Phytoestrogens and Gene Interactions 64
 3.15.1 Phytoestrogens and breast cancer 64
 3.15.2 Phytoestrogens and lipid, glucose metabolism 64
3.16 Phytosterols and Gene Interactions 65
 3.16.1 Phytosterols and cholesterol metabolism 65
 3.16.2 Phytosterols and cancer 65
3.17 Polyphenols and Gene Interactions 65
 3.17.1 Polyphenols and CVD 65
 3.17.2 Polyphenols and cancer 66
3.18 Nutrigenomics Summary: Advantages, Limitations, Future 66
3.19 Conclusions 67
References 67

4 Nutraceuticals and Antioxidant Function 75
Denise Young, Rong Tsao, and Yoshinori Mine

4.1 Introduction 75
5.12.2 Polyphenols and cancer 136
5.13 Increasing Health Beneficial Properties of Juices 137
References 139

6 Cruciferous Vegetable-Derived Isothiocyanates and Cancer Prevention 147
Ravi P. Sahu and Sanjay K. Srivastava

6.1 Introduction 147
6.2 Metabolism of Xenobiotics 149
6.3 ITCs and Inhibition of Cancer 150
6.3.1 Pancreatic cancer 150
6.3.2 Brain cancer 152
6.3.3 Prostate cancer 152
6.3.4 Lung cancer 154
6.3.5 Breast cancer 155
6.3.6 Colon cancer 156
6.3.7 Hepatic cancer 156
6.3.8 Bladder cancer 157
6.3.9 Multiple myeloma (MM) 158
6.3.10 Head and neck squamous cancer 159
6.3.11 Ovarian cancer 159
6.3.12 Skin cancer 160
Acknowledgments 161
References 161

7 The Disease-Preventive Potential of Some Popular and Underutilized Seeds 171
Rajeev Bhat

7.1 Introduction 171
7.2 Oil Seeds and Their Therapeutic Potential 172
7.2.1 Nigella seeds (Nigella sativa L.) 172
7.2.2 Sunflower seed (Helianthus annuus L.) 172
7.2.3 Groundnut seed (Arachis hypogea L.) 183
7.2.4 Sesame seeds (Sesamum indicum L.) 184
7.2.5 Oilseed rape (Brassica napus L.) 184
7.2.6 Safflower (Carthamus tinctorius L.) 184
7.2.7 Linseed (Linum usitatissimum L.) 185
7.3 Spice Seeds as Medicine 185
7.3.1 Coriander seeds (Coriandrum sativum L.) 185
7.3.2 Caraway (Cuminum carvi L.) 186
7.3.3 Pepper seeds (Piper nigrum L.) 186
7.3.4 Cumin seeds (Cuminum cyminum L.) 186
7.3.5 Fenugreek seeds (Trigonella foenum-graecum L.) 187
7.4 Legumes and Medicinal Use 187
7.4.1 Soybeans (Glycine max (L.) Merrill) 187
7.4.2 Mucuna pruriens L. 188
7.4.3 Tamarind seeds (Tamarindus indica L.) 188
7.5 Underutilized Seeds 189
7.5.1 Perilla (*Perilla frutescens* [Hassk.]) 189
7.5.2 *Hunteria umbellata* ([K. Schum] Hallier f.) 189
7.5.3 *Microula sikkimensis* (Hems.l.) 189
7.5.4 Chinese chive seeds (*Allium tuberosum* Rottl.) 190
7.5.5 Grape seeds (*Vitis vinifera* L.) 190
7.5.6 Pumpkin seeds (*Cucurbita* sp.) 191
7.5.7 Horse chestnut seeds (*Aesculus hippocastanum* L.) 192

7.6 Future Outlook 192
References 193

8 Effects of Carotenoids and Retinoids on Immune-Mediated Chronic Inflammation in Inflammatory Bowel Disease 213
Hua Zhang, Ming Fan, and Gopinadhan Paliyath

8.1 Introduction 213
8.2 Carotenoids 213
8.3 IBDs 214
8.4 Phytochemicals and Downregulation of IBD 215
8.4.1 Antioxidative capacity of carotenoids to reduce oxidative stress generated from inflammation 215
8.4.2 Immune-modulating activity of carotenoids 216
8.5 Effects of Carotenoids on Immune Genetic Mechanism of IBD 221
8.5.1 Potential role of retinoid receptors in attenuation of inflammatory diseases 222
8.5.2 Modulation of inflammatory responses through activation of nuclear receptors containing RXR heterodimers 223
8.6 Effects of Retinoids and Carotenoids on the Oxidative Stress Signaling Pathway 226
References 229

9 Ruminant Trans Fat as Potential Nutraceutical Components to Prevent Cancer and Cardiovascular Disease 235
Ye Wang, Catherine J. Field, and Spencer D. Proctor

9.1 Introduction 235
9.2 *c*9,*t*11-CLA Isomer and Health Implications 237
9.2.1 CLA modulates carcinogenesis 237
9.3 Mechanisms of CLA Action on Cancer 245
9.4 CLA Modulates CHD Risk Factors 245
9.5 Mechanisms of CLA Action on CHD 246
9.6 Vaccenic Acid 252
9.6.1 VA modulates carcinogenesis 253
9.6.2 VA modulates CVD risk factors 253
9.7 Dairy Fat Enriched with VA and CLA 254
9.7.1 Enriched dairy fat modulates carcinogenesis 254
9.7.2 Enriched dairy fat modulates CVD risk factors 255
10 Nanotechnology for Cerebral Delivery of Nutraceuticals for the Treatment of Neurodegenerative Diseases 263
Jasjeet Kaur Sahni, Sihem Doggui, Lé Dao, and Charles Ramassamy

10.1 Introduction 263
10.2 Oxidative Stress in Mild Cognitive Impairment (MCI) and AD 264
10.3 Efficacy of Selected Components of Nutraceutical Compounds in the Amyloid Cascade and in the Prevention of AD 266
10.4 Targeted NPs for Delivery of Bioactives Compounds from Foods for the Treatment of AD 272
 10.4.1 Catechins coupled with NPs 272
 10.4.2 NPs targeted with ApoE containing curcumin 273
 10.4.3 Resveratrol-loaded NPs protect against Aβ-induced toxicity 275
10.5 Conclusion 275

References 276

11 Cancer Prevention by Polyphenols: Influence on Signal Transduction and Gene Expression 285
Fatima Hakimuddin and Gopinadhan Paliyath

11.1 Introduction 285
11.2 Genetic Mechanisms of Carcinogenesis 285
11.3 Biochemical Mechanisms of Carcinogenesis 287
 11.3.1 Pathways and signals involved in neoplastic cell transformation and carcinogenesis 287
 11.3.2 Extracellular signal transduction 288
 11.3.3 Intracellular signal transduction 289
11.4 Signaling Pathways in Breast Cancer 291
 11.4.1 Calcium homeostasis and signaling 292
 11.4.2 Role of calcium in regulating cell proliferation and cell cycle 293
 11.4.3 Regulation of the cell cycle by calmodulin 293
 11.4.4 Calcium signaling and cell death 293
 11.4.5 Mitochondria, calcium signaling, and apoptosis 294
11.5 Cancer Prevention and Therapy 294
 11.5.1 Targeted therapies 294
 11.5.2 Phytochemicals and cancer prevention 296
11.6 Grapes and Red Wine as a Dietary Source of Polyphenols 298
 11.6.1 Health benefits of red wine 298
 11.6.2 Modulation of signaling pathways by flavonoids 306
11.7 Genetic Approach: Identification of Flavonoid Mediated Molecular Targets 308
11.8 Estrogen Metabolism, Breast Cancer, and Flavonoids 311
11.9 Polyphenols and Estrogen Signaling 312
References 313
12 Potato–Herb Synergies as Food Designs for Hyperglycemia and Hypertension Management 325
Fahad Saleem, Ali Hussein Eid, and Kalidas Shetty

12.1 Introduction 325
12.2 Phenolic-Enriched Chilean Potato and Select Species of Apiaceae and Lamiaceae Families in Diet 327
12.3 Combination of Potato with Seeds and/or Herbs for Hypertension and Hyperglycemia Management 331
 12.3.1 Chilean potato (Solanum tuberosum ssp. tuberosum L.) 331
 12.3.2 Apiaceae family 333
 12.3.3 Lamiaceae family 335
12.4 Conclusions: Combining the Chilean Potato with Seeds and Herbs from the Apiaceae and Lamiaceae Families 336
References 338

13 Fermentation-Based Processing of Food Botanicals for Mobilization of Phenolic Phytochemicals for Type 2 Diabetes Management 341
Chandrakant Ankolekar and Kalidas Shetty

13.1 Introduction 341
13.2 Diabetes: The Rising Burden 342
13.3 Fermentation and Health: A Historical Perspective 342
13.4 Fermentation: Adding Value 343
 13.4.1 Preservation of food through acid/alcohol formation 343
 13.4.2 Enrichment of food substrates through formation of micro and macro nutrients 344
 13.4.3 Flavor, aroma, and texture development 344
 13.4.4 Detoxification of substrates during fermentation 345
13.5 Phenolic Antioxidants and Diabetes Management 345
13.6 Microbial Aerobic Growth and Fermentation and Its Anti-Diabetes Potential by Phenolic and Antioxidant Mobilization 346
 13.6.1 Solid State Growth (SSG) 346
 13.6.2 Liquid state (submerged) fermentation 347
13.7 Fruit Juice Fermentation for Healthy Food Ingredients for Management of Type 2 Diabetes 348
 13.7.1 Apple juice fermentation 348
 13.7.2 Pear juice fermentation 349
 13.7.3 Cherry juice fermentation 349
13.8 Summary 350
References 351

14 Postharvest Strategies to Enhance Bioactive Ingredients for Type 2 Diabetes Management and Heart Health 357
Dipayan Sarkar and Kalidas Shetty

14.1 Introduction 357
14.2 Changing Dietary Patterns: A Historical Perspective 357
14.3 Noncommunicable Chronic Diseases: Era of New Global Epidemics 358
14.4 Healthy Diet: “Prevention Is Better Than Cure” 360
14.4.1 Fruits and vegetables: from garden of eden to modern horticulture 360
14.5 Bioactive Ingredients 361
14.6 Dietary Polyphenols: Impact on Human Health 362
14.6.1 Role of polyphenols in glucose metabolism 362
14.6.2 Polyphenols and cardiovascular disease 364
14.7 Phenolic Biosynthesis: Biological Mechanism to Improve Dietary Polyphenols in Plant Models 365
14.8 Postharvest Strategies to Improve Bioactive Ingredients in Fruits and Vegetables 367
14.8.1 Temperature 367
14.8.2 Light and oxygen 368
14.8.3 Chemical treatment and natural compounds 368
14.9 Phenolic-Linked Antioxidant Activity During Postharvest Stages in Fruits and Relevance for Type 2 Diabetes 369
14.10 Future Direction of Research: When Functional Food and Diet Become “Panacea” 370
14.10.1 Stage 1: physiology and growth during germination to maturity 370
14.10.2 Stage 2: postharvest management 371
14.10.3 Stage 3: food processing 371
14.10.4 Stage 4: biotechnological tools 372
14.10.5 Stage 5: in vitro studies 372
14.10.6 Stage 6: animal, clinical, and epidemiological studies 372
14.10.7 Stage 7: marketing, awareness, and education 373
14.11 Conclusions 373
References 373

15 Enhancing Functional Food Ingredients in Fruits and Vegetables 381
Shaila Wadud and Gopinadhan Paliyath
15.1 Introduction 381
15.2 Strategies for Nutritional Enhancement 382
15.3 Improving the Mineral Content of Plant Foods 383
15.3.1 Iron and zinc 384
15.4 Improving the Antioxidants Content of Plant Foods 385
15.4.1 Lycopene and β-carotene 385
15.4.2 Vitamin E 387
15.4.3 Flavonoids 387
15.5 Improving the Amino Acid Content of Proteins of Plant Foods 389
15.6 Improving the Fatty Acid Composition of Plant Seed Oil 390
15.7 Influence of Processing and Storage in the Nutritive Value of Plant Foods 391