CONTENTS

Preface xiii

Acknowledgment xvii

Introduction: Rising Energy Costs xix

PART I A TRILOGY OF POPULAR MISCONCEPTIONS 1

1 Global Warming 3

 Conventional Wisdom, 4
 CO₂ and the Carbon Cycle, 7
 The Greenhouse Effect, 10
 Recent Climate Changes, 11
 Carbon Dioxide, 13
 Other Global Warming “Forcing Agents”, 15
 Water Vapor, 15
 Methane, 20
 Nitrous Oxide, 21
 Ozone, 22
 Sulfur, 24
 Other Pollutants, 24
 Carbon-Based and Other Particulates, 26
 Solar Influences—Insolation and Irradiance, 26
 Global Net Primary Productivity (NPP), 30
 Intergovernmental Panel on Climate Change, 32
IPCC Report Conclusions, 34
Footnote on the IPCC, 35
Dealing with Global Warming, 36
Can Anything Be Done?, 37
The Kyoto Protocol, 38

2 The Hydrogen Economy (Aka, the Impossible Dream) 41

The Promise of Hydrogen, 42
The Scale of the Task—Why Replace Gasoline?, 42
Replacing Fuels Other than Gasoline, 43
Hydrogen as an Alternative Fuel, 44
Hydrogen Production Methods, 44
 Water-Splitting Processes—Overview, 47
 Hydrogen from Electrolysis, 48
 Electrolytic Hydrogen Production, 49
 Oxygen By-products, 49
 Energy Consumption and Electrolyzer Efficiency, 50
 Electrolysis: Emissions, 53
 Electrolysis: Economics, 53
Hydrogen from Hydrocarbons, 54
 Thermal and Catalytic Reforming from Natural Gas, 54
 Catalytic Thermochemical Reforming, 55
 Scaling Issues—Up and Down, 56
 Combustion CO₂ from Reforming, 57
 Hydrogen Production Costs, 59
Natural Gas Reserves and Hydrogen, 61
 Natural Gas and Hydrogen Manufacture, 62
 Other Hydrogen Production Methods, 62
 Photoelectrolysis, 63
 Biomass Conversion to Hydrogen, 64
 Hydrogen Production—Summary, 65
 Safety Considerations, 66
Transporting and Distributing Hydrogen, 67
 Compressing Hydrogen, 68
 Liquid Hydrogen, 69
 Pipelining Hydrogen, 70
 Pipeline Leakage Losses, 73
 Road Tanker Transportation of Hydrogen, 73
 Hydrogen Leakage Losses, 74
Transportation and Distribution Alternatives, 75
 Distributed Manufacturing of Hydrogen, 75
 By Electrolysis, 75
 By Reforming, 76
 Hydrogen Reformer Reliability, 76
 Hydrogen Reformer Safety, 76
3 Nuclear Energy and the Plutonium Economy

The Influence of Nuclear Energy, 117
Evolution of Reactor Designs, 122
Generation IV Reactors, 123
Fuel Recycling and Mixed Oxide Fuel, 125
Mixed Oxide Fuel (MOX) Use in Light-Water Reactors, 125
Mixed Oxide Fuel (MOX) Production and Processing, 126
Fast-Breeder Reactors, 127
Gas-Cooled Fast Reactor (GFR), 128
Lead-Cooled Fast Reactor (LFR), 128
Sodium-Cooled Fast Reactor (SFR), 129
Supercritical-Water-Cooled Reactor (SCWR), 131
Very High-Temperature Reactor (VHTR), 133
Radioactive Waste Disposal, 134
 Nuclear Facility Decommissioning, 137
 Decommissioning Examples, 139
 Transmutation of Nuclear Wastes, 140
Uranium Supply Concerns, 142
 Supply Projections, 146
 Uranium from Seawater, 150
Uncertainty about Safe and Sustainable Reactor Technology, 151
The Problem in Ontario, Canada, 152
Fusion Power, 153
 The Future is Dimming on Nuclear Power, 153

PART II ENERGY OPTIONS FOR THE FUTURE 155

4 Conventional Oil and Oil Reserves 157
 Oil Reserves, 158
 Conventional Natural Gas, 164
 “Unconventional” Oil, 167
 “Unconventional” Gas, 168
 Coal-Bed Methane (CBM), 169
 “Tight” Gas, 170
 Stranded or Orphaned Gas, 170
A Short (Age) Summary, 171
 Who Really Sets Oil Prices?, 171
Future Supply, Demand, and Pricing, 172
 Oil, 172
 Natural Gas and Synthetics, 175

5 Coal and Bituminous Reserves 178
 Coal, 179
 The Lurgi Process (Coal to Syngas or High BTU Fuel Gas), 182
 The Hygas Process (Coal to SNG), 183
 The Bi-Gas Process (Coal to SNG), 183
 The CO₂ Acceptor Process, 183
 Other Coal Processes, 186
 Underground Processing of Coal, 186
 Other Important Alternative Energy Sources, 187
 Municipal Waste, 188

6 Biomass and Ethanol 189
 Current Availability, 189
 Biomass Conversion Technologies, 191
 Prepreparation, 191
Conversion, 191
 Enzymatic Saccharification of Cellulose, 192
 Steam Explosion, 192
 Saccharification and Fermentation, 192
Conversion Products and By-Products, 193
 Sugars, 193
 Value-Added Products (e.g., Ethanol, Polymers), 193
 By-Products, 193
 Animal Feed, 193
 Lignin and Lignin Derivatives, 194
 Cellulose Derivatives, 194
Other Raw Materials for Biomass, 194
 Large-Scale, High-Value End Products from Non-Corn
 Biomass Conversion, 195
 Chemicals from Corn, 195
 Available Technologies for Chemicals Production
 from Biomass, 196
 Acid Hydrolysis of Biomass Cellulose, 196
 Countercurrent Hydrolysis, 197
 Enzymatic Hydrolysis, 197
 Commercialization, 198
Cost Implications of Biomass Use, 198
Net Energy Balances, 199
 Manufacturing Efficiency, 200
The Thermodynamics of Growing Corn, 201
 The Thermodynamics of Processing Corn into Ethanol, 202
 Ethanol Production Efficiencies, 206
Corn Production in the United States, 207
Federal Subsidies for Ethanol, 208
Longer Term Ethanol Prospects, 208
Final Ethanol Observations, 209

7 Methanol 211

 Possible Fossil Sources of Syngas, 214
 Methanol as an Energy Carrier, 215
 Methanol Manufacturing and Applications, 216

8 Diesel and Biodiesel 219

 “Clean Diesel” Fuel and Diesel Fuel Substitutes, 219
 The Diesel Market: The Future of Diesel Engines and Diesel Fuels, 219
 Diesel Engine Emissions, 222
 Biodiesel, 223
 What is Biodiesel?, 224
 Advantages of Biodiesel, 227
Disadvantages of Biodiesel, 233
Oxidative and Hydrolytic Stability, 234
Use in Diesel Hybrids, 236
Alternatives to Vegetable Oil-Based Biodiesel for Diesel Substitution, 236
Other Alcohols in Petroleum Diesel, 236
Other Oxygenated Additives in Petroleum Diesel, 237
Gas-to-Liquid (GTL) or Biomass-to-Liquid (BTL) Products as Diesel Substitutes, 238
Diesel Fuels and Fuel Substitutes—Summary and Discussion, 241
Diesel Fuel Conclusions, 243

9 Solar Energy and Photovoltaics

Solar Radiation, 245
 Scattered, Beam, and Albedo Radiation, 246
 Solar Insolation, 247
 Direct Solar Energy, 248
 Passive and Active Solar Heating, 248
Solar Photovoltaic Systems, 250
General Operation of PV Cells, 251
 PV Types, 253
 Amorphous Silicon, 253
 Single-Crystalline Silicon, 254
 Polycrystalline Silicon, 255
 Polycrystalline Thin Films, 255
Polycrystalline Thin-Film Materials, 255
 Multijunction PV Cells, 257
Dye-Sensitized Solar Cells, 257
Organic Solar Cells (OSC), 258
 Grid-Connected Solar Energy, 259
PV Solar Energy Prices, 259
PV Manufacturing Giants, 260
Future Outlook, 261

10 Fuel Cells for Stationary and Mobile Use

Fuel Cell Principles, 264
Types of Fuel Cell, 264
The Importance of FC Operating Temperatures, 265
Polymer Electrolyte Membrane/Proton Exchange Membrane Fuel Cell (PEMFC), 266
Regenerative PEM Cells, 269
The Direct Methanol Fuel Cell, 269
Solid Oxide Fuel Cells (SOFCs), 271
Hybrid Power Systems Incorporating SOFCs, 272
Other Important Fuel Cells, 273
The Alkaline Fuel Cell (AFC), 273
The Phosphoric Acid Fuel Cell (PAFC), 273
The Molten Carbonate Fuel Cell (MCFC), 273
Fuels for Fuel Cells, 274
Hydrogen—A Bad Choice for Fuel Cells, 274
Real-World Fuel Cell Efficiencies, 276
User Expectations, 278
Onboard Fuel Storage Requirements, 279
Realistic DOE Objectives, 280
Current Status, 281

Appendix 1 FAQ on Energy and Hydrogen 285
 Introduction, 285
 Questions on Basic Facts, 285

Appendix 2 Terms and Definitions 325
 Selected Terms and Conditions Courtesy H.S.D.Q.E., 325

Index 373