## Index

Note: Page numbers in *italics* indicate figures; tables are denoted with *t*.

AAC. See Acellular afibrillar cementum

AAE. See American Association of Endodontics

Aastrom Replicell® System bioreactor, 94

Acellular afibrillar cementum, 172

Acellular cementum, 174, 179, 191 characteristics of, 169–170, 170t formation of, 173, 175 tooth attachment and, 16

Acellular dermal matrix membrane, 201

Acellular intrinsic fiber cementum, 172

Acellular extrinsic fiber cementum, 169, 171

Acellular intrinsic fiber cementum, 172

Acetyltransferase, craniofacial patterning and, 9

Achondrogenesis type II, 113

Achondroplasia, 113

Acid-etched bonding therapies, in hypoplastic AI cases, 166

Actin, 21

Activin, tooth development and, 84, 122

Actonel, antiresorptive potency of, currently on U.S. market, 333

Adaptive cementum, 170

Adaptive immune response innate immune response and, 242–243 periodontal disease and activation of, 239–242 Adenosine triphosphate anabolic bone formation and, 65 mechanical force transduction and, 228

Adhesion, EMT and, 79

ADT. See Androgen deprivation therapy

Adult (benign) osteoporosis, 29, 30

Adult-onset osteoporosis, management of, 32

Adult orthodontic patient, challenges presented by, 269

Adult orthodontic treatment, overall goal of and planning for, 270, 274

Adults, complete edentulism in, prevalence of, 277

Adult stem cells, 192

AEFC. See Acellular extrinsic fiber cementum

African American women, osteoporosis in, 278

African American, osteoporosis in, 278

Age-associated osteoporosis, 277, 282–283 causes of, 282 implications of, in oral cavity, 282–283

Aggregatibacter actinomycetemcomitans, 237, 241, 242, 243

Aggressive periodontitis case 2, 233–235 radiograph of, showing severe, generalized bone loss, 234 generalized, intraoral photographs of, 234

Agricultural Revolution, rickets in wake of, 312

AHA. See American Heart Association

AIs. See Aromatase inhibitors

AKP2, 105

Akt, osteoclast survival, activation and, 243

Albers-Schonberg disease (osteopetrosis), 29

Alcohol consumption, clefting and, 13–14

Alendronate, 333 antiresorptive potency of, currently on U.S. market, 333t glucocorticoid-induced osteoporosis and, 283

Alkaline phosphatase, 47, 64 activity of, 183 family of enzymes, 105 levels of, in Paget’s disease and renal osteodystrophy, 295

Allografts, 93, 201

Alloplasts, 201

ALPL, 105

Aluminum, rickets in adults and, 313

Aluminum-induced bone disease, 327

Alveolar bone, 191 measured material properties of, 256t mechanical properties of, 257 regeneration of periodontal tissues and, 235 remodeling of, 262

Alveolar bone loss in periodontitis, NSAID therapy and, 238

Alveolar bone regeneration, stem cell properties of CNCCs and potential for, 83–85

Alveolar crest group of fibers, in periodontal ligament, 222

Alveolar mechanics without teeth, 263–264

Alveolar process modeling, 261–262 remodeling, 262

Alveolar ridge, incomplete unilateral cleft of, 14

Alveolar socket, dental loading and, 261

Ambn, null mice described for, 158

Ambn mutation, mouse, valuable functional information provided by, 159

Ameloblast cell biology, 154–156

Ameloblastin, 153, 154, 157, 338

Ameloblasts, 136, 153, 154, 159, 191, 338

Amelogenesis, function of ameloblasts during, 338

Amelogenesis imperfecta, 157, 159 characteristics of, 163 clinical correlation, 163–166 case presentation, 163–164, 164t discussion, 165–166 extracted maxillary permanent first molars with crown resorption, 164 histological evaluation, 165 mutation analysis, 165 panoramic radiograph of patient, 164 scanning electron micrographs of fractured teeth, 165 clinical examination, 164 clinical problems common to all patients with, 166 gene mutations leading to, 158 hypocalcified, 158 hypomaturation, 158 hypoplastic, 158 incidence of, 158 with severe discoloration, 145 treatment costs related to, 146

American Society for Bone and Mineral Research, 334
American Public Health Association, 314
American Medical Association, 317
American Academy of Oral Medicine, 312
Amelx, null mice described for, 158
Amelogenin, 153, 154, 156, 158, 338
Aredia, antiresorptive potency of, 19
Arachidonic acid products, reduction of AP-1 pathways, 19
Apoptosis inhibitors, 67
Apoptosis, 66, 67, 175
Apical group of fibers, in periodontal ligament, 222
Apoptosis, 66, 67, 175
Apoptosis inhibitors, 67
AP-1 pathways, 19
Arachidonic acid products, reduction of alveolar bone loss in experimental periodontitis and, 238
Arch cartilage, 4
Aredia, antiresorptive potency of, currently on U.S. market, 333
ARHR. See Autosomal recessive hypophosphatemic rickets
Aromatase inhibitors, cancer-related osteoporosis and, 284
Arp2/3 complex, 21
Arteriovenous (AV) shunts, multiple, Paget's disease and, 287
ASCs. See Adult stem cells
Asian men, osteoporosis in, 278
Asians, cleft lip and palate in, 13
Asian women, osteoporosis in, 278
Apopin, 225
ATF4, 44, 51, 102
ATP. See Adenosine triphosphate
Attachment level gain, guided tissue regeneration and improvement in, 204
Attention deficit-hyperactivity disorder, 251
Autogenous cells, 192–193
Autologous serum, 197
Autophagy, 67, 68
Autosomal dominant tooth agenesis affecting mostly molars, 129–131
panoramic radiograph of dentition of 13-year-old individual, 129–131
pedigree of family, 130
synopsis of permanent dentition in affected family members, 130
Autosomal dominant type of osteoporosis, 29
Autosomal recessive hypophosphatemic rickets, 107, 301
Axin2 gene family with multiple polymorphisms in, 132, 132–133
pedigree of four-generation family, 132
tooth agenesis and, 129
“Baby boom” generation, restorative dental treatment for, 269
Bacterial contamination, pulpal and periapical pathosis and, 249, 253
Bacterial plaque, periodontal disease and, 201
Bapx1, 9
Bardet-Biedl syndrome, ciliary dysfunction and, 10
Barrier membranes, categories of, 201
Barrtin, 40
Barx, 9
Basic multicellular unit, 48
tooth agenesis and, 129
Bone turnover and, 336
bone interface, 258–259
estrogen's impact on, 280
in skeleton, 279
Basolateral domain, 20
B-cells, periodontal disease and, 240, 242
BD. See Basolateral domain
BDNF. See Brain-derived neurotrophic factor
Beckham, Victoria, 319
Benign autosomal dominant type I Albers-Schoenberg disease (ADO I), 35
Benign autosomal dominant type II Albers-Schoenberg disease (ADO II), 35
Beriberi, 313, 318
Beta-carotene, overall mortality risk and, 320
β-catenin arrested tooth formation and, 123
normal bone function and, 66
Beta III tubulin, 86
bFGF. See Fibroblast growth factor
Bifid uvula
clinical associations and underlying causes of, 114–115
osteogenesis imperfecta and, 111, 113
Biglycan, 104, 137, 221, 222
Bioactive agents, periodontal tissue engineering and, 204
Bioengineered organ germ method, 195–196, 196
Bioengineered tissue-engineering products, FDA approval of, 197
Bioengineered tooth bud, 192
Biology, mineralization studies in vertebrate tissues and, 108
Biomechanics of teeth in bone, 255–264, 269–274
alveolar bone, 257
alveolar mechanics without teeth, 263–264
biomechanical consequences of tooth absence or loss, 263–264
implants, 264
case presentation, 270–271
cementum, 258
discussion, 271–272
loading of teeth and jaws, 258–261
functional morphology of tooth-bone interface, 258–259
ligament or fluid support?, 260–261
living attachment apparatus, 259
loads on teeth during function, 260
measured material properties of tooth-bone interface, 256
mechanical properties of periodontal constituents, 255, 257
methods for deriving material properties, 257
modeling/remodeling in response to mechanical strain, 261–263
alveolar process, modeling, 261–262
alveolar process, remodeling, 262
craniofacial skeleton as a whole, 262–263
soft tissues, 261
Bone acidic glycoprotein (BAG75), 47
Bone balance, calcium balance and, 298
Bone bridging, 107
Bone contours, in VBD patients, 74
Bone core biopsy
of bone regenerated with cell therapy, 97
harvesting of, 96
regenerated, three-dimensional
reconstruction of, 97
Bone extracellular matrix, composition of, 99
Bone extracellular matrix deposition
early events in, 102–103
FN matrix in bone, 102
matrix stiffness and osteoblast
differentiation, 102–103
Bone FN, sources for, 102
Bone formation
effects of sclerostin on, 73
glucocorticoids and, 76
inflammatory mediators and, 245
regulation of, 106
osteoblasts and, 59
sclerostin antibody and, 76
sclerostin as inhibitor of, 71–72
transcription factors involved in, 44–46
Bone graft materials, biosorbable
membranes and use of, 201
Bone health, public health advice on
dietary fats, sun and, 319
Bone homeostasis
basis of, 35
osteocyte viability and, 67
Bone-ligament enthesis, measured
material properties of, 256t
Bone loss. See also Osteoporosis
aggressive periodontitis and, 233–235, 234
estrogen deficiency and, 336, 337
glucocorticoid-induced osteoporosis
and, 283
implants and, 264
periodontal disease and, 237
Bone marrow
harvesting, cell therapy approach for
jawbone defects, 94
proper formation of, 84
Bone marrow-derived mesenchymal stem
cells, in cell-based tissue
regenerative approaches, 93
Bone marrow graft, human extraction
socket and, 95–96
Bone marrow mesenchymal stem cells, 84
immunomodulatory properties of, 87
osteoclast interactions with, 25
Bone marrow mononuclear cells, 93
Bone marrow stromal cells, 193, 194
Bone mass, maintenance of, during adult
life, 17
Bone matrix, degradation of, 24–25
Bone mineral density
assessing, 278
systemic, studies evaluating
periodontitis and, 281
trabecular, osteoporosis and loss of,
277
Bone mineralization, induction of, 106
Bone morphogenetic protein-7, cell-
homeing methods for tooth
regeneration and, 196
Bone morphogenetic protein (BMP)
signaling, NCC induction and, 79
Bone morphogenetic proteins, 43
crown development and, 173
dental development and, 122
in mineralized cementum matrix, 172
mineral tissue formation and, 209
periodontal regeneration and, 201
recombinant, 344
regulation of tooth development and,
192
Bone regeneration, enhancing, strategies for, 52–53
Bone remodeling, 48. See also
Inflammation-induced bone remodeling
matrix–matrix interfaces and, 107
osteocytes as orchestrators of, 66–67
through life span, 25
Bone repair, intrinsic mechanisms of, 51–52
Bone repair cells, cell packaging
following production of, 95
Bone resorption
bisphosphonates and inhibition of, 333
coupling and, 244
integration of immune resorption and,
in periodontal disease, 241
osteoporosis-associated, mediation of, 280
podosome formation/organization and, 21
RANKL inhibitors and inhibition of, 334
Bone sialoprotein, 47, 172
Bone-sparing drugs
dental management of patient using,
334–335
diagnosing ONJ with, 334–335
Bone surface, relationship between
mesenchymal stem cells, preosteoblasts, osteoblasts, and
osteocytes on, 46
Bone turnover
estrogen and, 336
mineralization and, 101
regulation of, 106
Bone vasculature, osteocyte lacunacanalicular network and, 64
Boniva, antiresorptive potency of, currently on U.S. market, 333t
Bovine molars dynamic testing of, 257 width of periodontal space in, 259 Brain-derived neurotrophic factor, 82 Branchial arch formation of mouth and, 3–4 specifying, Hox genes and, 9 “Brandywine isolate,” DGI-III and, 144 BRCs. See Bone repair cells Breast cancer, 336 bisphosphonates and treatment for, 333 cancer-related osteoporosis and treatment for, 283, 284 Brodie bite, 307 Brown tumors, 285, 295 Bruck syndrome, 113 Bruton’s tyrosine kinase, 19 BSP, 175 in matrix of dentin, 137t mineralization of dentin and, 138–139 Buccal shields, 260 Bucconasal groove, 6 Budd, George, 313 CAL. See Clinical attachment loss Calbindin-D28k, as inhibitor of osteocyte cell death, 67 Calcification (dental), vitamin D deficiency and, 328, 329 Calcitic mineral, 108 Calcitonin, 298 glucocorticoid-induced osteoporosis and, 283 as inhibitor of osteocyte cell death, 67 Calcitonin receptor, 17 Calcitriol, 33, 327 Calcium distribution of, 297 ionized, 297 Calcium carbonate, 297 Calcium deficiency, osteoporosis and, 278 Calcium homeostasis, 301 disorders of, and effects on craniofacial bones and teeth, 298 impact of on craniofacial bones and teeth calcium balance, maintaining, 297–298 calcium distribution, 297 osteocytes and, 63 regulation of, 298 Calcium hydroxide dentinal bridging and, 207 regenerative endodontics and, 211, 212, 215 Calcium metabolism, functional properties of dentoalveolar complex and, 507 Calcium oxalate, 297 Calcium phosphate, 297 Calcium sulfate membrane, 201 Calcium supplements adult U.S. population and consumption of, 320 for hypocalcemia, 298 mortality risk and fracture risk associated with, 320t overall mortality risk and bone fractures in adults/seniors, 320t positive benefits for oral cavity and, 282 vitamin D supplementation co-administered with, 321t Calcium supplements for hypocalcemia and, 298 Cancer, hypercalcemia and, 298 Cancer-related osteoporosis, 277 androgen ablation and aromatase inhibitors, 283–284 Calmodulin, 10 Calvaria, extensive sclerosis of, 74 Calvaria, extensive sclerosis of, 74 CAMP response element-binding proteins, 102 Canaliculi, 63, 100 Cancellous bone, assessing density of, 278 Cancer, hypercalcemia and, 298 Cancer-related osteoporosis, 277 androgen ablation and aromatase inhibitors, 283–284 Candida albicans, 286 CAP. See Cementum-enamel junction Cardiovascular disease, 277 Caries dental disease hypotheses and, 321 HPP and, 188 as most prevalent infectious disease of mankind, 159 Carollia perspicillata, in two fruit-eating bats, 259 Cathepsin K, 17 Caucasian men, osteoporosis in, 278 Caucasian women, osteoporosis in, 278 Cbl, 21 CCD. See Cleidocranial dysplasia CCLN7 gene mutations, 35 CD63, as candidate for amelogenin receptors, 156 CD90.2, 84 CD-146 antigens, 223 Cdc42, 22 CDGEF. See Cementum-derived growth factor CDJ. See Cementum-dentin junction CD63/LAMP, 154 CD40 ligand, as inhibitor of osteocyte cell death, 67 CD4+ lymphocytes, periodontal disease and, 240 C/EBP, 45 C/EBP-alpha, 153 CEJ. See Cementum-enamel junction Cell adhesion molecules, 154 Cell death, osteocyte viability and, 67–68 Cell homing, 192 Cell-homing method, for tooth regeneration, 193, 196 Cell-matrix interactions, mechanical forces and, 228 Cell-matrix interfaces, in bone, 106–107 Cell preparation, for cell delivery, 95 Cell processing, automatic, 94 Cell surface glycoproteins, in periodontal ligament, 221 Cell therapy bone core biopsy of bone generated with, 97 clinical, 96 barrier membrane placement for cell containment, 96 harvesting of bone core biopsy, 96 measuring extent of defect with periodontal probe, 96 nonrestorable tooth just prior to removal, 96 osseous defect created following tooth removal, 96 regenerated osseous defect after six weeks, 96 restored tooth six months after placement of dental implant, 96 six-week CT and histological analyses, 97 sponge placement within defect, 96 schematic, 94 Cell therapy approaches, general critique of, 96–97 Cell therapy science, emergence of, 93 Cell therapy strategies, critical questions to ask about, 97 Cellular cementum, 174, 179 characteristics of, 170–171, 170t formation of, 175 roots of teeth of sclerosteosis patients and, 74 Cellular intrinsic fiber cementum, 169, 171 Cellular mixed stratified cementum, 172 Cement, 169 Cementoblast differentiation, HERS cells and, 176–177 Cementoblasts, 173, 174, 176, 179 in periodontal ligament, 220, 223 Cementocytes, 74, 174

Index
Cementogenesis
acellular cementum formation, 173, 175
cellular cementum formation, 175
cementum homeostasis, 175–176
differentiation factors, 178
growth factors and, 177–178
mineralization regulators and, 178–179
root formation in, 173
Cementoid, 223
Cementum, 108, 135, 169–180, 231, 331
acellular, 179, 191
adaptive, 170
bacterial infection of pulpal and periapical pathosis and loss of, 249, 253
cellular, 179
composition of
  cementum-specific markers, 172–173
collagens, 172
growth and differentiation factors, 172
noncollagenous extracellular matrix proteins and proteoglycans, 172
dentin and, 140
first microscopic demonstration of, on human teeth, 169
intracanal, 215
major varieties of, 171
mechanical properties of, 258
origins of, classical and alternative hypotheses, 176
regeneration of, 85
regeneration of periodontal tissues and, 235
reparative (or regenerative), 170
secondary, 170
summary remarks on, 179–180
types of, 169–172
acellular, 169–170
acellular afibrillar, 172
cellular, 170–171
cellular mixed stratified, 172
  coronal, 172
Cementum attachment protein, 172
Cementum-dentin junction, measured
  material properties of, 256t
Cementum-derived growth factor, 172–173
Cementum-enamel junction, 172
Cementum homeostasis, 175–176
Cementum-ligament enthesis, measured
  material properties of, 256t
Cementum protein 23 (CP-23), 173
Central core, 4
Cereal consumption, rickets and rise in, 312, 313, 314
Cervical loops, formation of, 119
c-Fms, 18
c-FOS, 19
Chediak-Higashi syndrome, 145
Cheek pressures, loads on teeth and, 260
Children
  positive bone balance in, 298
  successful caries prevention and, 269
Children with special healthcare needs, interdisciplinary team/approach for, 330
Chiroderma villosum, in two fruit-eating bats, 259
Cholecalciferol (D3), 327
Chondrocranium, 3
  primitive vertebrate cranial skeleton, 4
Chondroitin sulphate content, increase in, periodontal disease and, 232
Chronic kidney disease, renal osteodystrophy and, 291, 295
Chronic kidney disease-mineral and bone disorder, 282, 291, 292, 295
Chronic periodontal diseases, 231–232
Chronic periodontitis
case 1, 232–233, 233
  generalized, clinical view of, 232
CIC-7 (MIM 602727), 39–40
CIFC. See Cellular intrinsic fiber cementum
Citium, 10
Ciprofl oxacin, in triple antibiotic paste, 40
Cleft lip
  complete bilateral, 14
  complete unilateral, 14
  detecting with ultrasounds, 14
  incomplete bilateral, 14
  maternal multivitamin use and, 14
  prevalence of, ethnic and gender factors, 13
Cleft lip and palate, clinical correlation, 13–16
  case presentation, 14–15
  facial view of maxillary arch, left side, 15
  facial view of patient showing excellent surgical results, 16
  occlusal view of maxillary arch, 15
  summary, 16
Cleft palate, 10, 14, 81, 113
  complete bilateral, 14
  complete unilateral, 14
  detecting with ultrasounds, 14
  Eustachian tube dysfunction and, 15
  maternal multivitamin use and, 14
  prevalence of, ethnic and gender factors, 13
  speech development and, 15, 16
Cleidocranial dysostosis, 178
Cleidocranial dysplasia, 59–62, 101, 123
  characteristics and incidence of, 59
  discussion about, 60–61
Clinical attachment loss, decreased BMD in postmenopausal women and, 282
CMD. See Craniofacial dysostosis
CML. See Chronic myeloid leukemia
CNPase, 86
Cord liver oil, 314
advertisement for, 316
COL1A1, 111, 112
COL1A2, 111, 112, 113
COL1A1, 112
COL I deposition, 102
Collagen fibrils, in bone, 103
Collagen membrane, 201
CLCN7 gene, 40
  mutational analysis of, 38–39
  mutations in, spectrum of osteopetrotic phenotypes caused by, 39
Clefting
  environmental factors related to, 13–14
  unclear etiology of, 13–14, 16
Cleft palate, 10, 14, 81, 113
  complete bilateral, 14
  complete unilateral, 14
  detecting with ultrasounds, 14
  Eustachian tube dysfunction and, 15
  maternal multivitamin use and, 14
  prevalence of, ethnic and gender factors, 13
  speech development and, 15, 16
Cleidocranial dysostosis, 178
Cleidocranial dysplasia, 59–62, 101, 123
  characteristics and incidence of, 59
  discussion about, 60–61
Clinical attachment loss, decreased BMD in postmenopausal women and, 282
CMD. See Craniofacial dysostosis
CML. See Chronic myeloid leukemia
CNPase, 86
Cod liver oil, 314
advertisement for, 316
COL1A1, 111, 112
COL1A2, 111, 112, 113
COL1A1, 112
COL I deposition, 102
Collagen fibrils, in bone, 103
Collagen membrane, 201
Dental epithelium, signaling networks mediating sequential and reciprocal interactions between mesenchyme and, 122
Dental extrusion, adult orthodontic patients and, 270
Dental follicle, 174
Dental follicle cells, 219
Dental follicle stem cells, 194
Dental hard tissues, defects in, 125
Dental home, managing patients with vitamin D deficiency and need for, 330
Dental migration, characteristics of, 269
Dental papilla, 173, 174
Dermal bones, 3
Dental tooth bud cells, 194
Dental-to-enamel junction, 159
Dentin, 108, 135, 173, 191, 255, 331
Dental stem cells
Dentinogenesis imperfecta, 107, 135–136
Dentin sialophosphoprotein, 113, 136
Dentin phosphoprotein, 137
Dentin matrix protein 1, 47, 107, 172
defects in dentin formation and loss of, 139
dentin defects and, 144–145
gene mutations, 107
impact of, on craniofacial bones and teeth, 302
mineralization and, 63
mineralization of dentin and, 138
regulation of osteocyte maturation by, 300
Dentinogenesis imperfecta, 107, 135–136
clinical correlates, restorative procedures, caries and, 143–150
maxillary periapical radiographs showing large pulp chambers and abscessed maxillary left second molar, 112
with more severe forms of osteogenesis imperfecta, 113
presentations and basic defects, 111
treatment costs related to, 146
type I, 143, 148, 150
type II, 136, 140, 143–144, 146, 150
clinical course of patient with, 146–148
type III, 136, 140, 144, 146, 150
types of, 143–144
Dentin structure
dental tubules and odontoblast processes, 139
mineralized dentin, 139
Dentin histophosphoprotein, 137
Dentin-pulp complex, 135, 215
Dentin sialophosphoprotein, 85, 113, 136
defects in dentin formation and loss of, 138
mineralization of dentin and, 136–138
Dentin structure
dental tubules and odontoblast processes, 139
mineralized dentin, 139
Dentin-to-enamel junction, 154
Dentures, 191
Dermal bones, 3
Dermatan sulphate, decreasing, periodontal disease and, 232
inherited, incidence of, 150
inherited, phenotypic variations of, 144
Dentin dysplasia, 140
Dentine, 154
Dentin formation, 135–139, 140
BSP, 138–139
differentiation of odontoblasts, 136
DMP1, 138
DSPP, 136–138
loss of DMP1 and defects in, 139
loss of DSPP and defects in, 138
matrix proteins and mineralization of dentin, 136
OPN, 139
principles of, 135–136
Dentin matrix protein 1, 47, 107, 172
defects in dentin formation and loss of, 139
dentin defects and, 144–145
gene mutations, 107
impact of, on craniofacial bones and teeth, 302
mineralization and, 63
mineralization of dentin and, 138
regulation of osteocyte maturation by, 300
Dentinogenesis imperfecta, 107, 135–136
clinical correlates, restorative procedures, caries and, 143–150
maxillary periapical radiographs showing large pulp chambers and abscessed maxillary left second molar, 112
with more severe forms of osteogenesis imperfecta, 113
presentations and basic defects, 111
treatment costs related to, 146
type I, 143, 148, 150
type II, 136, 140, 143–144, 146, 150
clinical course of patient with, 146–148
type III, 136, 140, 144, 146, 150
types of, 143–144
Dentin structure
dental tubules and odontoblast processes, 139
mineralized dentin, 139
Dentin-to-enamel junction, 154
Dentures, 191
Dermal bones, 3
Designer estrogen, 336
DFSCs. See Dental follicle stem cells
DGI. See Dentinogenesis imperfecta
dHAND, NCC fate specification and, 83
DI. See Dentinogenesis imperfecta
Diabetes, 277
postnatal stem cells and treatment for, 192
Didronel, antiresorptive potency of, currently on U.S. market, 333
Diencephalon, 44
Dental Supplement Health and Education Act, 317
Dietary supplements, randomized controlled trials of, 320–321
Diploë of calvaria, VBD and disappearance of, 73, 74
Discolored teeth
clinical course of patient with dentinogenesis imperfecta type II, 146–148
dentinogenesis imperfecta and restorations for, 146
minocycline and, 214, 215
tetracyclines and, 159, 339
Dissociated cells with tooth-shaped scaffolds, regeneration methods with, 195
Distal-less homeobox (Dlx) code, CNCC patterning information and, 80
DKK-1, bone formation and, 245
Dkk-1, increased bone mass and mutations/deletions in, 66
Dlx, 9
Dlx2, arrested tooth formation and, 123
Dlx3, trico-dento-osseous syndrome and, 158
Dlx3/4, 9
Dlx5/6, 9
Dlx family members, determining identity of mandible vs. maxilla, 9
DMP1. See Dentin matrix protein 1
DMP1-37kDa, in matrix of dentin, 137
DMP1, 57kDa, in matrix of dentin, 137
DMP1 mutations, in autosomal recessive hypophosphatemic rickets, 301
Dmp1-null mice
loss of DMP1 and dental defects in dentin formation in, 139
loss of DSPP and dental defects in dentin formation in, 138
DMP 1-PG, in matrix of dentin, 137
DMP1 57 kDa, in matrix of dentin, 137
DMP1-37 kDa, in matrix of dentin, 137
DMP1, 57 kDa, in matrix of dentin, 137
DMP1 mutations, in autosomal recessive hypophosphatemic rickets, 301
DMP1-null mice
loss of DMP1 and dental defects in dentin formation in, 139
loss of DSPP and dental defects in dentin formation in, 138
DMP 1-PG, in matrix of dentin, 137
DPP. See Dentin phosphoprotein
DPSCs. See Dental pulp stem cells
Drift, 262
DSP. See Dentin sialophosphoprotein
DSP-PG, in matrix of dentin, 137
Etidronate, 333
Ethnicity
Etanercept, 243
Estrogen signaling pathway, mechanical
Estrogen(s)
Expanded polytetrafluoroethylene
Exostoses, in VBD patients, 74
Exon 8, X-linked tooth agenesis and,
Exfoliation of teeth, periodontitis and,
Exercise, positive bone balance and, 298
Eustachian tube dysfunction, cleft palate
Face, 6
Extra cusp or tubercle, dens evaginatus
Extraction socket, human, bone marrow
Extracellular matrix proteins, bone repair
Extracellular matrix proteins, bone repair and, 51
Extracellular signal regulated kinase (ERK) cascade, 18
Extraction socket, human, bone marrow
Extra cusp or tubercle, dens evaginatus and, 249, 250, 251
Face, 6, 6
formation of, 4–5, 5, 13
postmigratory CNCCs and development of, 80
species-specific patterning of, 10
Facial bone thickening, craniometaphyseal dysplasia and, 305, 306, 306
Facial-digital syndrome, ciliary dysfunction and, 10
Facial swelling, renal osteodystrophy and, 291
FAK, bone healing and, 52
FAM83H, 158
Familial adenomatous polyposis, cause of, 124
Familial hypophosphatemia, vitamin D deficiency and, 327
FAP. See Familial adenomatous polyposis
Farnesyl pyrophosphate synthase, 23
FDA. See Food and Drug Administration
Federal Food, Drug and Cosmetic Act, 316
Federal Trade Commission, 317
Feeding, babies with palatal clefts, 14–15, 16
Females, cleft palate in, 13. See also Women
Femur, Paget’s disease and, 286
Fetal head, human, 172
Fibrous dysplasia, 291, 294
Fibronectin receptor alpha subunit
Fibronectin (FN) matrix, 102
Fibrinolysin, tooth crown development characteristic of, 103
Fibrillin-1, 102
Fibrils, 46
Fibro-atrophic degeneration, radiation therapy and, 332
Fibroblast growth factors, 9, 43
cell-homing methods for tooth regeneration and, 196
CNCC migration and, 173
crown development and, 122
in mineralized cementum matrix, 172
tooth development and, 84
Fibroblasts homeostasis of periodontal ligament and, 225
mechanical loading and, 227
in periodontal ligament, 220, 222–223
Fibromodulin, 221, 222
Fibronectin (FN) matrix, 102
Fibronectin receptor alpha subunit (alpha 5), 222
Fibrous dysplasia, 291, 294
Ficoll density gradient centrifugation, BMMNCs purified by, 93–94
Finsen, Niels, 311
Fisher, Sir Ronald, 320
Fish oil cure, rickets and, 313
Fluid flow shear stress, 49, 50
Fluoridated water, caries inhibited by, 159
Fluoride, 321
effects of, on teeth and bone, 338–339
enamel formation and, 338, 339
Fluoroapatite, 338, 339
Fluorosis, 338
Flurbiprofen, decreased periodontal bone loss and, 238
FN-COL I matrix, 102
FN matrix, in bone, 102
Folic acid supplementation, health concerns related to, 318
Follistatin, tooth crown development and, 123–124
Food advertising, U.S. budget for, 317
Food and Drug Administration, 317
Forehead enlargement, rickets and, 298
Formocresol, regenerative endodontics and use of, 215
Fosamax, antiresorptive potency of, currently on U.S. market, 333
FoxD3, 79
FoxI2, 9
FOXO1, cytokine-induced apoptosis in osteoblastic cells and, 245
Fractures aromatase inhibitors and, 284
mechanics of, 157
microfractures, 282
osteoporosis and, 277–278
age-associated, 282
FRAX tool, for predicting fracture risk, 278
Fringe fibers, 219
Frontal bone, human fetal head, 4
Frontal bossing, rickets and, 298, 312
Frontonasal process, 5
Frontal bone, human fetal head, 4
Frontonasal prominence, postmigratory CNCCs and development of, 80
Fruit-eating bats, micro-CT reconstructions comparing teeth of, 259
FTC. See Federal Trade Commission
Furlow palatoplasty, 15
GAD, 86
Gb2x, 9
GEF-induced GTPase activation, OC activity and, 22
Gender bone quality changes and, 282, 283
cleft lip and palate and, 13
osteoporosis and, 278
primary hyperparathyroidism and, 284
Gene manipulation techniques, advances in, 101  
Gene regulatory networks, tooth development and, 123–124  
Gene therapy, periodontal tissue engineering and, 204  
Genetic bone diseases, clinical-genetic-phenotypic osteoporosis-like subtypes, 29  
Genetic disorders, molecular mechanisms of, 113  
Geology, mineralization studies in vertebrate tissues and, 108  
GFAP, 86  
GFP. See Green fluorescent protein  
Gingiva, 231  
Gingival crevicular fluid, IL-1 and IL-6 elevations in, 238  
Gingival margins, adult orthodontic patients and, 270  
Gingival MSCs, 85  
Gingival recession, guided tissue regeneration and prevention of, 204  
Gingivitis, 231  
"Ground-glass" appearance of bone, fibrous dysplasia and, 294  
of bone, renal osteodystrophy and, 291, 292, 295  
of trabeculae, lateral skull radiograph showing, 293  
Good Calories, Bad Calories (Taubes), 318  
Green fluorescent protein, 47  
Haberman bottle, for feeding babies with clefts, 15  
Hand1/2, 9  
Hand, VBD and right hand of 52-year-old patient, 74  
Hard tissues, 297  
HA/TCP. See Hydroxyapatite-tricalcium phosphate  
HD proteins, 43, 44  
Head formation of, 3  
human fetal, 4  
species-specific patterning of, 10  
Headgear, 263  
Health commercialism, of early twentieth century, 316–318  
Hearing loss, cleft palate and, 15, 16  
HED. See Hypohidrotic ectodermal dysplasia syndrome  
Hedgehog family members, tooth development and, 84  
Heliotherapy, 311, 314  
Helper T-cells, periodontal disease and, 240  
Hematopoietic stem cells osteoclastogenesis and, 18, 18  
transplantation of, infantile subtypes of osteoporosis and, 33  
Hemichannels, on osteocytes, 65  
Hemochromatosis, 311  
Hemosiderin, brown tumors and, 285  
Hereditary opalescent dentin, 143  
Hereditary connective tissue disorders, perspective on, 115  
Hertwig's epithelial root sheath (HERS), 120, 173, 174, 192, 223  
cellular cementum formation and, 175  
cementoblast differentiation and, 176–177  
cementoblast origins and, 177  
cementum origins and, 176, 177  
root formation and, 219  
High-resolution peripheral quantitative imaging, bone mineral density assessment with, 278  
Hip, DXA of, limitations with, 278  
Hip fractures, cost burden and mortality figures related to, 278  
Hominid bottle, for feeding babies, 278  
Homo sapiens, 80  
Hondas, VBD and right hand of 52-year-old patient, 74  
Homo sapiens, 101  
Hormones, bone response to mechanical stimulation and, 50  
Hoxa2, 9  
Hox gene family, patterning of pharyngeal arches and, 43  
HPP. See Hypophosphatasia  
HPT-JT. See Hyperparathyroid jaw tumor syndrome  
HR-pQCT. See High-resolution peripheral quantitative imaging  
HRT. See Hormone replacement therapy  
Hypocalcemia, 285, 298–299  
Hypoblastic, 35  
Hyperparathyroidism, 277  
Hypoparathyroidism, vitamin D deficiency and, 327  
Hyperparathyroid jaw tumor syndrome, 285  
Hyperparathyroidism, 68, 286, 300  
Hypocalcemia, 298, 300  
Hypocalcemia due to hypoparathyroidism, vitamin D deficiency and, 327  
Hypocalcified amelogenesis imperfecta, 158  
Hypodontia, 125  
Hypogonadism, secondary osteoporosis and, 283  
Hypohidrotic ectodermal dysplasia syndrome, 123, 131  
Hypomatured amelogenesis imperfecta, 158  
Hypophosphatasia, 107, 145, 178  
Hypoplasia, 125  
Hyporetic and Hypocalcemia, 298, 300  
Hypothalamic mechanisms, 113  
Hyaluronic acid, periodontitis and, 120, 173, 174, 192, 223  
Hydroxyapatite, functional properties of dentoalveolar complex and, 307  
Hydroxyapatite crystals, 135, 140, 156, 307  
Hydroxyapatite mineral in bone, 46  
in cementum, 172  
Hydroxyapatite tooth scaffolds, with stromal-derived factor-1, 196  
Hyperparathyroid jaw tumor syndrome, 85  
Hypothyroidism, 80  
Hyoid bone, human fetal head, 4  
Hyperbaric oxygen therapy, ORN and, 307  
Hypercalcemia, 285, 298–299  
Hyperparathyroidism, 35  
Hyperparathyroidism, 277  
Hypocalcemia and, 298  
primary, 284–285  
secondary, 339  
vitamin D deficiency and, 327  
Hyperparathyroid jaw tumor syndrome, 285  
Hyperparathyroidism, 68, 286, 300  
Hypocalcemia, 298, 300  
Hypocalcemia due to hypoparathyroidism, vitamin D deficiency and, 327  
Hypocalcified amelogenesis imperfecta, 158  
Hypodontia, 125  
Hypogonadism, secondary osteoporosis and, 283  
Hypohidrotic ectodermal dysplasia syndrome, 123, 131  
Hypomatured amelogenesis imperfecta, 158  
Hypophosphatasia, 107, 145, 178  
characteristics of, 183, 188  
clinical subtypes of, 184  
reduced TNAP function in, consequences of, 16
Infantile subtypes of osteoporosis, management of, 32–33
Inflammation-induced bone remodeling coupled formation in periodontal disease, 244–245
Inflammation-induced osteoclastogenesis, 243–244
Inflammation-induced osteoclastogenesis, 243–244
Inflammatory cytokines
bone formation, bone coupling and, 245
postmenopausal osteoporosis and, 279
Inflammatory periodontal diseases, 231
Inflammatory process, uncoupling in periodontitis and, 244
Injuries, periapical pathosis and, 249
Innate immune response activation of, periodontal disease and, 238–239
antigen presentation in naive CD4 cells leading to development of committed CD4 cells, 239
interaction between adaptive immune response and, 242–243
microbe-associated molecular patterns and stimulation of, 241
Inner ear otoconia, 108
Inner enamel epithelia, 173
Innervation of periodontal ligament, 224
In situ tissue regeneration, 192
Insulin-like growth factors, bone response to mechanical stimulation and, 50
Integrin-actin cytoskeletal mechanism, 271
Integrin alpha,beta3, 17
Integrin binding sialoprotein, dentin defects and, 145
Integrin clustering, adhesion contacts and, 21
Integrins, 154–156
Interdisciplinary care, for children with vitamin D deficiency, 330
Interferons, mechanical forces and, 228
Interleukins, mechanical forces and, 228
Intermediate autosomal recessive osteoporosis, 35
Intermediate osteoporosis, 29, 30, 32
Intermediate plexus, 219
International Skeletal Dysplasia Society, Nosology Group of, 29
Interprism, 156
Interradicular group of fibers, in periodontal ligament, 222
Interrod, 156, 157
Intra-arch Dlx code, 9
Intracanal cementum, 215
Intradentin fractures (nonreduced breaks), 207, 209
Intramembranous bone formation, 279
Ion channels, stretch-activated, mechanical strain and, 227
Ionized calcium, 297
iPS cells. See Induced pluripotent stem cells
Irx5, 9
ITAM proteins, 19
Jalili syndrome, CNNM4 mutations and, 158
Jaw. See also Osteonecrosis of the jaw;
Osteoradionecrosis of the jaw
bone remodeling in, 255
Paget's disease and, 287
Jawbone defects, cell therapy approach for, 93–95, 94
Jawbone development, BMP activity and, 85
Jawbone enlargement, in sclerosteosis and Van Buchem disease, 73, 74
Jaw cortical bone, measured material properties of, 256
Jaw enlargement due to CKD-MBD, treatment of, 295
renal osteodystrophy and, 291, 294, 295
Jawless vertebrates, early, cranial region of, 3
Jaw specification, Dlx molecules and, 9
Journal of Clinical Orthodontics, 269
Journal of the American Medical Association, 316
Juvenile-onset osteoporosis, morbidity associated with, 33
Kallikrein 4, 158
Kidney failure, hypercalcemia and, 298
Kidneys, FGFR3 and, 300
kif3 gene, 10
KLK4. See Kallikrein 4
Klk4, null mice described for, 158
Knock-in mice, understanding enamel defects and, 158
Lacunae, 63
Lamellar bone, 7, 46
Lamina dura, renal osteodystrophy and loss of, 291
Lamina limitans, 106–107
Laminin-I, 222
Laminins, in periodontium, 222
LAMP1, as candidate for amelogenin receptors, 156
Lateral nasal process, 5, 6
Latham device, 15
Lef1, arrested tooth formation and, 123
Leukemia, postnatal stem cells and treatment for, 192
Leukocytes, periodontal disease and activation of, 238
Lhx6, 9
Lining cells, 63
Lip
- incomplete unilaterally clef of, 14
- intact, 14
Lipid mediators, inflammatory bone resorption and, 238
Load, osteocytes as mechanosensory cells and, 64–65
Loading of teeth and jaws, 258–261
- functional morphology of tooth–bone interface, 258–259
- ligament or fluid support?, 260–261
- living attachment apparatus, 259
- loads on teeth during function, 260
Loeys-Dietz syndrome, 114, 115
Long bones, Van Buchem disease and, 73, 75, 76
Low-birth-weight births, 277
Lumbar spine, Paget’s disease and, 286
Lipid mediators, inflammatory bone resorption and, 238
Macrophages, periodontal disease and, 240
Magnetic resonance imaging, bone mineral density assessment with, 278
MAGPs. See Microfibril-associated glycoproteins
Major histocompatibility complex, 240
Males, cleft lip and palate in, 13. See also Men
Malformation syndromes, congenital dental aberrations and, 124
Malignant osteoporosis, 29, 30
Malocclusion, osteogenesis imperfecta and, 145
Mammals
- drift in, 262
- tooth–bone interface in, 255
MAMPs. See Microbe-associated molecular patterns
Mandible(s), 3
- age-associated osteoporosis and, 282, 283
- bone loss and, 279
- cancer-related osteoporosis and, 284
development of, 7–8
- formation of
general pattern of intramembranous bone deposition related to, 8
- site of initial osteogenesis related to, 7
- glucocorticoid-induced osteoporosis and, 283
- human fetal head, 4
- neural crest origin of, 279
- occlusal loading and, 257
- TGF β superfamily and, 83
- Mandibular bone, exposed, conditions that may present with, 334
- Mandibular lingual mucosa, ONJ associated with bisphosphonates located on, 332
- Mandibular osteomyelitis, CCLN7-associated autosomal recessive osteopetrosis and, 35, 38, 40
- Mandibular overgrowth, renal osteodystrophy and, 292
- Mandibular process, 4
- Mandibular prognathism, sclerosteosis and, 73
- Mandibular prominence, postmigratory CNCCs and development of, 80
- MAP kinase pathway
- mediation of cytokine-induced osteoclastogenesis and, 243
- osteoblast function and, 50–51
- Marble bone disease (osteoporosis), 29
- Marfan syndrome, 113, 115
- Marrow, bone healing and, 52
- Masson’s trichrome staining, of bone formation, 95, 97
- Mastication, 191
- elastic response with rapid loading and, 258
- living attachment apparatus and, 259
- loads on teeth during function, 260
- in vivo in pigs, average bone strain on working side during, 263
- Maternal smoking, clefting and, 13. See also Men
- Matrix extracellular phosphoglycoprotein, 47, 145
- in matrix of dentin, 137
- Matrix GLA protein, regulation/maintenance of periodontal ligament space and, 226
- Matrix-matrix interfaces, in bone, 106, 107
- Matrix metalloproteinases, tetracyclines and, 339
- Matrix metalloproteinase 20, 158
- Matrix-organizing proteoglycans, in periodontal ligament, 221
- Matrix proteins, mineralization of dentin and, 136
- Matrix stiffness, osteoblast differentiation and, 102–103
- Matrix vesicle mineralization, earliest events in, 106
- Matrix vesicles, 47
- Mature dental tissue regeneration, 192
- Maxilla, 3
- age-associated osteoporosis and, 282, 283
- cancer-related osteoporosis and, 284
development of, 8–9
- glucocorticoid-induced osteoporosis and, 283
- human fetal head, 4
- occlusal loading and, 257
- Paget’s disease and, 287
- TGF β superfamily and, 83
- Maxillary bone, exposed, conditions that may present with, 334
- Maxillary hyperplasia, renal osteodystrophy and, 291
- Maxillary overgrowth, renal osteodystrophy and, 292
- Maxillary process, 6
- Maxillary prominences, development of, 13
- M-CSF, 17, 25
- impact of estrogen on basic multicellular unit and, 280
- principal pathways from, involved in osteoclastogenesis, 18, 18
- MDCT. See Multidetector computed tomography
- Mechanical loading
- bone response to, 49–50
- periodontal ligament and, 226–229, 227
- adenosine triphosphate, 228
- cell-matrix interactions, 228
- cyclic AMP, 228
- cytokines, 228–229
- ion channels, 227
- prostaglandins, 228
- regulation of sclerostin expression in osteocytes and, 72
- Mechanical strain, 261–263
- alveolar process, modeling, 261–262
- alveolar process, remodeling, 262
- average bone strain on working side during in vivo mastication in pigs, 263
- craniofacial skeleton as a whole and, 262–263
- soft tissues and response to, 261
- tooth absence and, 263
- Mechanical theory for osteonecrosis, 68
- Mechanoreceptors, 224
- Mechanosensory osteocyte network, 101
- Mechanotransduction, 227, 227
- Meckel’s cartilage, 4, 7, 7, 8, 8
- Medial nasal process, 5
- Medial nasal process, 6
- Mef2C, 10
- MEK1, 50
- MEK2, 50
- Melanoma-associated antigen/mucin 18,
Mellanby, Sir Edward, 313, 314, 319
Menander, deprivation therapy and osteoporosis in, 284
Osteoporosis and, 278
Primary hyperparathyroidism and, 284
Trabecular bone quality and, 282
Menopause
Accelerated bone loss and, 278
Estrogen deficiency at, 279
MEPG. See Matrix extracellular phosphoglycoprotein
Mesenchymal layers, recombined, regeneration methods with, 195, 196
Mesenchymal stem cells, 46, 53
Bone surface and, 46
Identification of, in craniofacial region, 85
Of periodontal ligament, 223, 224
Pluri-potent, osteoblast progenitors vs., 101
Mesenchymal tissues, mechanical loading and, 261
Mesenchyme, signaling networks mediating sequential and reciprocal interactions between dental epithelium and, 122
Mesenchyme stem cell (MSC) markers, 84
Messenger RNAs (mRNAs), 10
Metabolic bone disease defined, 277
Impact of, on craniofacial bones and teeth, 277–287
Metal alloys, new superelastic, 269
Metronidazole, in triple antibiotic paste, 211, 213
Mineralization of bone, 104–106
Bone turnover and, 101
Calcium in bones and teeth and, 297
Induction of, 106
Mineralization regulators, 178–179
Mineralization studies in vertebrate tissues, uniqueness of, 108
Mineralized dentin, description of, 139
Mineralized matrix (MM) of bone, light and transmission electron micrographs showing, 100
Mineralized tissues in oral and craniofacial science, 135–140
Basic structure of dentin, 139–140
Conclusions and future directions, 140
Dentin formation, 135–139
Mineral metabolism
Impact of, on craniofacial bones and teeth, 297–302
Proper cell functioning and, 301
Mineral metabolism disorders, defined, 297
Mineral trioxide aggregate, 207, 211, 213, 215
Miniscrews, popularity of, 272
Minocycline, 339
Miniscrews, popularity of, 272
Miq. See Matrix metalloproteinases
MMP-2, tensile strain and, 228
MMP-20. See Matrix metalloproteinase 20
Mmp20, null mice described for, 158
MMPs. See Matrix metalloproteinases
MMTV. See Mouse mammary tumor virus
Modeling of alveolar process, 261–262
Molar placodes, in E12 mouse mandible, 211, 213
Molar uprighting, in adult orthodontic patients, 270
Molar roots, absence of, in ARO patients, 40
Molar eruption, in adult orthodontic patients, 270
Molecular interactions, regulation/maintenance of periodontal ligament space and, 226
Mongoloid populations, dens evaginatus in, 219
Monocyte chemotactic proteins (MCP) 1 and 3, as inhibitor of osteocyte cell death, 67
Mouse dentition, human dentition vs., 120
Mouse mammary tumor virus, wingless-type, 10
Mouse models, enamel defects understood with, 158–159
Mouth formation of, 3–4, 13
Postmigratory CNCCs and development of, 80
Necrosis, defined, 67
NCCS. See Neural crest cells
NCPS. See Noncollagenous proteons
NCSC. See Neural crest stem cell
Necrosis, defined, 67
Nerve fibers, within periodontal ligament, 224
Nerve growth factor, 82, 196
Nestin, 86
NeuN, 86
Mouth breathing, vitamin D deficiency and, 328
MRI. See Magnetic resonance imaging
Msx, 9
Msx1, arrested tooth formation and, 123
MSX-2, 226
MTA. See Mineral trioxide aggregate
MUC-18. See Melanoma-associated antigen/mucin 18
Multidetector computed tomography, bone mineral density assessment with, 278
Multivitamin use (maternal), cleft lip and palate and, 14
Murine teeth
Cki7 expression in development of, 40
Human teeth and, 158
MyoD/myogenins, 45
NAM. See Nasoalveolar molding
Nanomechanical testing, 157
Naproxen, decreased periodontal bone loss and, 238
Nasal bone, human fetal head, 4
Nasal capsule, primitive vertebrate cranial skeleton, 4
Nasal septum, 5
Nasoalveolar molding, 15
Naso-optic groove, 6
Nasu-Hakola disease, 19
National Cholesterol Education Program, 311
National Osteoporosis Foundation, 278, 319
National Osteoporosis Society, 319
Native Americans, cleft lip and palate in, 13
Natural killer (NK) cells, 87, 240
Natural tooth regeneration, 207–209
Case presentation, 207
Conclusion, 209
Discussion, 207–209
Sequential radiographies depicting dentinal repair/regeneration of tooth 19 occurring over a 12-year period, 208
NCCs. See Neural crest cells
NCPS. See Noncollagenous proteons
NCSC. See Neural crest stem cell
Necrosis, defined, 67
Nerve fibers, within periodontal ligament, 224
Nerve growth factor, 82, 196
Nestin, 86
NeuN, 86
Nutritional deficiency syndromes, 313
Null mice, understanding enamel defects and, 158, 159
Nutritional deficiency syndromes, 313
Nutritionism
Birth of, between World Wars I and II, 314–316
infant formulas and, 315–316
N-WASP. See Neuronal WASP
Obesity, pediatric, 319
Oblique group of fibers, in periodontal ligament, 222
OBs. See Osteoblasts
Occipital bone, human fetal head, 4
Occlusal forces, bending of mandible under strain of, 312
OCN, 175
OCP. See Octacalcium phosphate crystals
OCs. See Osteoclasts
Octacalcium phosphate crystals, 338
Odontoblast processes, 139
Odontoblasts, 135, 136, 173, 174
Odontogenic epithelium, formation of, 4–5
Odontohypophosphatasia, 107, 183
Odontohypophosphatasia in identical twins, 183–186
case presentation, 183–186
OEE. See Outer enamel epithelium
OIC-7, 40
Olfactory placodes, 5
1,25-dihydroxyvitamin D₃, 48, 49, 53, 299, 301
ONJ. See Osteonecrosis of the jaw
OP. See Osteoporosis
OPG. See Osteoprotegerin
OPN, 175
in matrix of dentin, 137t
mineralization of dentin and, 139
Oral cavity
age-associated osteoporosis and, 282–283
cancer-related osteoporosis and, 284
glucocorticoid-induced osteoporosis and implications in, 283
Paget’s disease and, 287
primary hyperparathyroidism and, 285
secondary hyperparathyroidism and, 286
Oral clefts, prevalence of, 13
oral craniofacial abnormalities, understanding genetic factors tied to, 133
Organ niche, 85
ORN. See Osteoradionecrosis
Orofacial clefts
multidisciplinary team efforts for children with, 16
prevalence of, 16
syndromes associated with, 13
types of, 14
Orofacial mesenchymal stem cells, immunomodulatory property of, 87
Orthodontic services, changing demographics of patients, 269, 272
Orthodontic tooth movement, mechanically induced modeling of alveolar bone and, 262
Orthodontic treatment, viscosity with sustained loading and, 258
OSCAR, 19, 25
Ostea substantia, 169
Osteointegration, 191
Osteitis fibrosa, 286, 294
Ostelin, 314
Osteoarthritis, osteocyte cell death and, 67
Osteoblast activity, regulation of, 40
Osteoblast differentiation
matrix stiffness and, 102–103
transcriptional regulation of, 101–102
Osteoblastic cells, inflammatory cytokines and, 245
Osteoblast lineage, transcriptional control of, 44, 44–46
Osteoblast-lineage bone cells, light and transmission electron microscopy showing, 100
Osteoblasts, 17, 173
aging and, 282
bone formation regulated by, 59
bone remodeling, balance between osteoclasts and, 25
bone surface and, 46
defined, 46
estrogen and, 336
fluoride and, 339
Impact of estrogen on basic multicellular unit and, 280
major regulatory functions of bone remodeling, 48
regulation of phosphate homeostasis, 48–49
response of bone to mechanical loads, 49–50
mature, properties of, 46–48
osteoblast-to-osteocyte differentiation, 64
osteoporosis and, 278–279
parathyroid hormone and, 285, 337
in periodontal ligament, 220, 223
response of, to resorptive signals, 48
secretory, in vivo lifetime of, 47
Osteoblasts of craniofacial bone, 43–53
embryological origin of, from neural crest, 43, 44
properties of mature osteoblasts and osteocytes, 46–48
signaling pathways affecting osteoblast function, 50–51
Wnt pathway and control of osteoblast vs. adipocyte lineages, 51
summary and future directions related to, 53
transcriptional control of osteoblast lineage, 44–46
Osteocytes, 51–53
intrinsic mechanisms of bone repair, 51–52
strategies for enhancing regeneration of bone, 52–53
Osteoblast-to-osteocyte differentiation, 64
Osteocalcin, 47, 102
in cementum, 172
in matrix of dentin, 137

Osteoclast activity
regulation of, 20–25
acidification of the resorption compartment, 23–24
degradation of the bone matrix, 24–25
migration and adhesion, 20–23
vesicular transport, 23
Osteoclast differentiation and function, regulation of osteoblast activity and, 40
Osteoclastic bone resorption, regulation of, 17
Osteoclastogenesis
inflammation-induced, 243–244
principal signaling pathways from c-FMS, RANK, TREM2, and OSCAR involved in, 18
RANKL and, 333
Osteoclast precursor
from hematopoietic cell to, 18
moving to mature osteoclast from, 18–20
Osteoclast-rich ARO, 35
Osteoclasts, 17, 35, 63
bone remodeling, balance between osteoblasts and, 25
estrogen and, 336
interactions with immune cells, 25–26
interaction with bone marrow mesenchymal cells, 25
origin of, 17–18
osteocytes and activation of, 67
osteoporosis and, 278, 279
Pagetic, 287
parathyroid hormone and, 285
tetracyclines and, 339
viability of, 67, 67
Osteocyte apoptosis theory, for osteonecrosis, 68
Osteocyte lacunocanalicular network, bone vasculature and, 64
Osteocyte maturation, DMP1 and regulation of, 300
Osteocytes, 100
bone surface and, 46
cell biology of craniofacial bone, 63–69
functions of, 63
healthy adult skeleton and health of, 69
major regulatory functions of bone remodeling, 48
regulation of phosphate homeostasis, 48–49
response of bone to mechanical loads, 49–50
mature, properties of, 46–48
mechanical loading regulates sclerostin expression in, 72
as mechanosensory cells, 64–65
medical, dental, and health implications tied to, 68
as orchestrators of bone remodeling, 66–67
osteoblast-to-osteocyte differentiation, 64
osteogenesis imperfecta, 105, 107, 148
classification, clinical characteristics, mode of inheritance, and genes, 114
Osteogenesis imperfecta primer, 111–115
osteoporosis, 105, 107, 148
osteopenia, 277
osteomalacia, 286, 313
osteomalacous, 100
Osteolacunocanalicular system, bone disease and connectivity/structure of, 68
osteomalacia, 286, 313
fluoride-associated, 339
renal osteodystrophy and, 294
vitamin D deficiency and, 327
osteomalic bones, defects in extracellular matrix and, 107
osteomyelitis of the jaw, CLCN7-associated autosomal recessive osteopetrosis and, 35, 38, 40
osteonecrosis, mechanisms responsible for, 68
osteonecrosis of the jaw, bisphosphonates and, 280, 283, 287, 332, 334
clinical conditions that may mimic, 335
defined, 343
diagnosing with bone-sparing drugs, 334–335

osteoporosis, 17, 25, 68, 105, 243, 277, 286, 298
age-associated, 277
implications in oral cavity, 282–283
bisphosphonates and treatment of, 333
cancer-related, 277
androgen ablation and aromatase inhibitors, 283–284
implications in oral cavity, 284
case presentation, 29–31
characteristic dental features, 32
clinical and molecular classification of, 29, 30
defeat of unprocessed food hypothesis and advent of, 318–320
extracranial features with, common, 32
first description of, 29
fluorides and treatment of, 338, 339
glucocorticoid-induced, 277
human, description of, 35
incidence of, 32
inflammation, osteoblasts and, 244
inflammation, uncoupling and, 244–245
longest latency period among diseases of civilization, 319
long-term prognosis for, 33
in mice lacking p50 and p52, 19
in mice lacking PU.1, 18
mouse models of, 29
osteocyte cell death and, 67
osteomyelitis of both mandible and maxilla following surgical intervention, 32
periodontal disease and, elucidating connections between, 280
PLEKHM1 deficiency and, 23
postmenopausal, 277–280, 282, 336
epidemiology, 278
etiology, 278–279
impact on craniofacial bones, 279–280, 282
Osteoporosis (cont’d)
prevalence of, in Americans, 278
primary, 283
risk factors for, 278
secondary, 283
treatment approaches, 32–33
vitamin D deficiency and, 327
WHO definition of, 277
Osteoprotegerin, 64, 242
Osterix (OSX), 64
Parathyroidectomy, 295
Papillon-Lefèvre syndrome, 145
Parathyroid hormone, 48, 53, 284
bone and, 336–337
bone response to mechanical stimulation and, 50
calcium and phosphate homeostasis and, 301
defined and function of, 285
mechanical loading, bone mass and, 66
mineralization and, 178
periodontal regeneration and, 202
phosphate regulation by, 299
synthesis of, 298
Paraxial mesoderm, craniofacial development and, 81
Parietal bone, human fetal head, 4
Parkinson’s disease, postnatal stem cells and treatment for, 192
Pax9 gene
arrested tooth formation and, 123
tooth agenesis and, 129, 130, 131, 133
Paxillin, 21
PBMNCs. See Peripheral blood mononuclear cells
PDB. See Paget’s disease of bone
PDGF. See Platelet-derived growth factor
PDL. See Periodontal ligament
PDLCs. See Periodontal ligament stem cells
PEA. See Phosphoethanolamine
Pediatric obesity, 223
Pellagra, 313
Pelvis
Paget’s disease of bone, 17, 31, 105, 277,
286–287, 291, 294–295
bisphosphonates and treatment of, 333
etiology of, 286–287
fluorides and treatment of, 339
implications in the oral cavity, 287
prevalence of, 286
Palatal enlargement, renal osteodystrophy and, intraoral view of, 293
Palatal expanders, 265
Palate
development of, 13
CNCCs and, 81
intact, 14
Palatine shelves, 5, 6
Palatogenesis, 80–81
Pamidronate, antiresorptive potency of, currently on U.S. market, 333
PAOO. See Periodontal accelerated osteogenic orthodontics
Papillon-Lefèvre syndrome, 145
Parathyroidectomy, 295
Pamidronate, antiresorptive potency of
Parathyroid hormone, 48, 53, 284
bone and, 336–337
bone response to mechanical stimulation and, 50
calcium and phosphate homeostasis and, 301
defined and function of, 285
mechanical loading, bone mass and, 66
mineralization and, 178
periodontal regeneration and, 202
phosphate regulation by, 299
synthesis of, 298
Paraxial mesoderm, craniofacial development and, 81
Parietal bone, human fetal head, 4
Parkinson’s disease, postnatal stem cells and treatment for, 192
Pax9 gene
arrested tooth formation and, 123
tooth agenesis and, 129, 130, 131, 133
Paxillin, 21
PBMNCs. See Peripheral blood mononuclear cells
PDB. See Paget’s disease of bone
PDGF. See Platelet-derived growth factor
PDL. See Periodontal ligament
PDLCs. See Periodontal ligament stem cells
PEA. See Phosphoethanolamine
Pediatric obesity, 319
Pellagra, 313
Pelvis
Paget’s disease of bone, 286
severely malformed femoral heads, IARO and, 39
Van Buchem disease and, 73
Pentoxifylline, for ORN, 332
Periapical diagnoses, accurate, 253
Periapical pathosis
cause of, 249
regenerative endodentics in immature tooth with, 211–215
resolution of, 251
Peridontal ligament stem cells, 86–87
Peridontitis, progression from gingivitis to, 238
Periodontal accelerated osteogenic orthodontics, 272
Periodontal constituents
mechanical properties of, 255, 257
methods for deriving material properties of, 257
Periodontal disease
activation of adaptive immune response and, 239–242
activation of innate immune response and, 238–239
age-associated osteoporosis and, 282
bacterial etiology of, 237
cancer-related osteoporosis and, 284
coupled bone formation in, 244–245
distinguishing signs of, 201
integration of immune response and bone resorption in, 241
osteoporosis and, elucidating connections between, 280
Periodontal ligament, 16, 170, 191, 193,
219–229, 255
components of, 220
description of, 219
development of, 219–220
functional morphology of, 259
future translational research on biomechanics and, implications for, 264
general structure and composition of, 220–224
arrangement of fibers in, 222
cementoblasts and osteoblasts, 223
collagens, 221
elastin, 221
epithelial cell rests of Malassez, 223
fibroblasts, 222–223
innervation of, 224
mesenchymal stem cells of periodontium, 223
other nonfibrous proteins of, 222
proteoglycans, 221–222
vasculature of periodontium, 223–224
in health and disease, major functions of, 231–232
histological features of, 221
homeostasis of, 225
mechanical loading and, 226–229, 227
adenosine triphosphate, 228
cell-matrix interactions, 228
cyclic AMP, 228
cytokines, 228–229
ion channels, 227
prostaglandins, 228
mechanical properties of, 257–258
mechanical loading and, 261
osteogenic response to tensile strains in, 271
overall, measured material properties of, 256
principal function of, 220
regeneration of, 85
regeneration of periodontal tissues and, 235
regulation and maintenance of periodontal ligament space, 225–226
epithelial cell rests of Malassez, 225
extracellular matrix molecules, 226
matrix GLA protein, 226
molecular interactions, 226
periodontal ligament-associated protein, 225–226
prostaglandins, 25
protein S100A4, 225
transcription factors, 226
role of, 86
self-healing and regeneration of, 194
uniqueness of, 219, 229
Periodontal ligament-associated protein, 225–226
Periodontal ligament cells, 173, 174
Periodontal ligament stem cells, 85, 197, 198
Periodontal ligament cells, 173, 197, 223
Periodontal mechanics, ligament or fluid support?, 260–261
Periodontal regeneration, 201–205
case presentation, 202–203
collagen membrane, 204
collagen membrane trimmed to fit defect, 204
discussion, 203–205
initial clinical presentation of tooth 8 and tooth 8 at 6 weeks post initiation of treatment, 202
initial periapical radiograph of tooth 8 and periapical radiograph of tooth 8 at 5-month re-evaluation visit, 202
medical and health perspectives on, 179
Periodontal space, 261, 264
fluids of, 259
tensile strains in, 262, 263
width of, 259
Periodontal tissues, regeneration of, 235
Periodontitis, 17, 18, 25, 179, 231, 277
activation of osteoclasts and, 243
aggressive, case 2, characteristics of, 233–235
characteristics of, 232, 234–235
chronic, case 1, clinical features and characteristics, 232–233
osteonecrosis of the jaw and, 344
prevalence of, 235
studies evaluating relationship between systemic bone mineral density and, 281
tooth loss and, 279
Periodontium, 169, 191, 192
developing, schematic of, 220
function of, 231
Periostium
bone healing and, 52
layers of, 7
Periosteum membrane, 201
Periostin, 222
Peripheral blood mononuclear cells, 87
p50, 19
p52, 19
PGA/PLLA, 195
PGE2, bone resorption and, 238
PGs. See Proteoglycans
Pharyngeal arches, 3, 43
Pharynx, primitive vertebrate cranial skeleton, 4
PHEx, 47, 300
gene mutations, 107
mineralization and, 63
Phosphate
distribution and balance in, 299
functions of, 299
regulation of, 299–300
by FGF23, 299–300
by PTH and 1,25 (OH)2D3, 299
Phosphate homeostasis
critical need for, 16
impact of, on craniofacial bone and teeth, 299
regulation of, 48–49, 53
Phosphate metabolism
functional properties of dentoalveolar complex and, 307
mineralization processes and, 178
PHOSPHO1, 106
Phosphoethanolamine, increased urinary, 285
hypophosphatasia and, 183
P, systemic, regulation of, 308
Pierre Robin sequence, 13
Pigs, drift in, 262
Pig skull, dry, photo showing placement of crystals that transmit and receive ultrasound signals, 260
Pitx1, 9
Pitx2, 123
Planar polarity genes, 10
PLAP-1. See Periodontal ligament-associated protein
Plaque
chronic periodontitis and, 232, 232
periodontal disease and, 201
Plasma pyridoxal 5'-phosphate, increased, hypophosphatasia and, 183
Pitx1, 9
Pitx2, 123
Plasticity
primary palate, 4–5, 13
Primates, drift in, 262
Primary palate, 4–5, 13
Primary osteoporosis, 283
Purpose, 283
Primary palate, 4–5, 13
Primates, drift in, 262
Primitive vertebrate cranial skeleton, major components of, 4
Prism, 156
Probing pocket depth, guided tissue regeneration and improvement in, 204
Processed foods
endemic nutritional deficiency syndromes and, 322
ricetakes and, 312–313
unprocessed foods vs., 317–318
Prolixa, 333
Prolixa, 333
Podosomes
description of, 20–21
formation and organization of, 21
organization into different patterns during migration and resorption, 20
Polycaprolactone, 196
Polycystin complex, bone cells and, 65
Polyglactin-910 membrane, 201
Polyactic acid membrane, 201
Porphyromonas gingivalis, 237, 239, 240, 243, 244, 245
Postmenopausal osteoporosis, 277–280, 282, 336
epidemiology, 278
etiology, 278–279
impact on craniofacial bones, 279–280, 282
Postnatal stem cells, 192
Postnatal tooth buds, 194
Post-otic crest, 80
Pou3f3, 9
PP. See Pyrophosphate
PPARy, 45
PP, concentration, CMD and, 308
Predentin
description of, 139
formation of, 135
Pregnant women, folic acid supplementation for, 318
Premolars, VBD and radiograph of, 74
Preosteoblastsone surface and, 46
progression of, to osteoblasts and osteocytes, 47
Price, Weston, 318, 321
Primary dental lamina, 119
Primary dentin, 139–140
Primary dentition, development of periodontal ligament and, 219
Primary hyperparathyroidism, 284–285
etiology of, 285
implications in the oral cavity, 285
incidence of, 284
Primary osteoporosis, 283
Primary palate, 4–5, 13
Primates, drift in, 262
Planar polarity genes, 10
Prostaglandins
anabolic bone formation and, 65
innate immune response and, 238
mechanical force transduction and, 228
regulation/maintenance of periodontal ligament space and, 225
release of, through hemichannels, 65
Prostate cancer
biphosphonates and treatment of, 333
cancer-related osteoporosis and treatment for, 283, 284
Protein kinase C (PKC) pathway, mediation of osteoclastogenesis and, 243
Protein S100A4, regulation/maintenance of periodontal mechanical force transduction and, 65
innate immune response and, 238
anabolic bone formation and, 65
sequelae of, on bone, 331
Proteinases
in matrix of dentin, 137t
in periodontal ligament, types of, 221–222
PRF. See Platelet rich plasma
PSCs. See Postnatal stem cells
PTH. See Parathyroid hormone
PTHR1, bone formation, intracortical remodeling and, 66
Pulp, 135
Pulpal diagnoses, accurate, 253
Pulpal necrosis, regenerative endodontics in immature tooth with, 211–215
Pulpal pathosis, cause of, 249
Pulpal therapy, dentinogenesis imperfecta and, 146
Pulp chamber, 135
Pulp vitality tests, 250
Purkinje, Jan Evangelista, 169
PU.1 transcription factor, osteoclastogenesis and, 18, 18
Pyk2, 21, 22
Pyrophosphate
increased urinary, hypophosphatasia and, 183
mineralization processes and, 178
Quaker Oats, vitamin D-fortified oats, 314
Rab GTPase family, vesicular transport and, 23
Rachitic infants and children, 312
Radiation, side effects of, 347
Radiation damage, 343
Radiation therapy
“dental clearances” and, 346–347
mechanism of action in, 331–332
sequelae of, on bone, 331
Radiolucency, periapical, resolution of, 252
Radiotherapy, side effects and complications of, 343
Raloxifene, 336
RANK, 19
RANKL, 17, 25, 64
apoptotic osteocytes and, 67
ATP, force transduction and, 228
impact of estrogen on basic multicellular unit and, 280
initial identification of, 19
mediation of periodontal bone loss and, 242
osteoclastogenesis and, 48, 279
principal pathways from, involved in osteoclastogenesis, 18, 18
RANKL inhibitors
ONJ and, 332
what they are and what they do, 333–334
RANK-RANKL-OPG axis, stimulation of bone resorption and, 242, 243
RANK-RANKL/OPG system, OC differentiation and, 18–19
RAP. See Regional acceleratory phenomenon
Rats, drift in, 262
RB. See Ruffled border
Reactive oxygen species, 25
Reactive oxygen species, 25
Refrained sugar, rickets and, 312
Regeneration. See also Natural tooth regeneration; Periodontal regeneration; Tissue regeneration; Stem cell therapy; Periodontal tissues, 235
tooth replacement and, 124
Regenerative cementum, 170
Regenerative endodontics comparison of dental wall thickness moderate crown discoloration 30 months post treatment, 214
defined, 214
goal of, 215
in immature tooth with pulp necrosis and periapical pathosis, 211–215
case report, 212–214
discussion, 214–215
summary, 215
Regenerative medicine, aim of, 95, 214
Regional acceleratory phenomenon, 272
Regulatory T-cells (T-reg), periodontal disease and, 240, 241
Reichert’s cartilage, 4
Remodeling, 261
of alveolar process, 262
of periodontal ligament tissues, 225
Renal insufficiency, hyperphosphatemia and, 300
Renal osteodystrophy, 277, 291–295
case presentation, 291–292
secondary hyperparathyroidism and, 285–286
summary, 295
treatment of, 295
Renal transplantation, 295
Reparative dentin, 140
Reparative (or regenerative) cementum, 170
Replacement tooth development, initiation of, 120
Resorption compartment, acidification of, 23–24
Resorption lacunae, acidification of, 24
Restorative dental treatment, changing demographics of patients, 269, 272
Resveratrol, 243
Retzius, Anders, 169
Reverse headgear, 263
RGD-CAP, in periodontal ligament, 226
Rheumatoid arthritis, 17, 18, 25, 243
inflammation, uncoupling and, 245
Rho GTPases, 21, 22
Rhombomeres, 44
Ribs, Van Buchem disease and, 73, 76
Rickets
characteristics and symptoms of, 312
comeback appearance of, in twenty-first century, 319
dental-systemic associations and, 321
first description of, 297
hypophosphatemic, 301
industrial foods and, pre-vitamin, pre-World War I era, 311–313
as not a typical nutritional deficiency syndrome, 313–314
processed foods and, 312–313
sunshine hypothesis and, 312
twins with, 319
vitamin D deficiency and, 327
Risedronate, 333
anti-resorptive potency of, currently on U.S. market, 333t
Rodents, 156, 157
Root canal, 135. See also Endodontic treatment (root canal treatment)
Root development, outer dental epithelium and, 40
Root formation, cementum and, 173
Root initiation, 174
Root morphogenesis, 120
Root ZX Apex Locator, 251
ROS. See Reactive oxygen species
Roth's sealer, warm vertical technique with, 251
RSK2, 51
Ruffled border, 20, 23
Runt domain family, of transcription factors, 45
Runx1, 45
Runx2, 45, 50, 64, 178
arrested tooth formation and, 123
cellular phosphate and, 300
chondrocyte differentiation and, 44, 45
as master regulator of osteoblastogenesis, 59
transcriptional regulation of osteoblast differentiation and, 101–102
Runx-2/OSF-2, 226
treatment of renal osteodystrophy and, 285–286
implications in the oral cavity, 286
periodontal ligament and, 219
Skull base, VBD and thickening of, 73
Smith, John, 313
Skeletide, antiresorptive potency of, 65, 66
Skeletostin, 65, 66
Sclerostin/Sost, 65, 66
dental or orofacial mesenchymal cells in craniofacial region, 85–86
Signaling pathway, 82–83
development of diverse craniofacial structures, 80–82
regionalization and migration, 80
fate determination and differentiation of CNCC, function of TGF-β-signaling pathway, 82–83
identification of mesenchymal stem cells in craniofacial region, 85
immunomodulatory property of dental or orofacial mesenchymal stem cells, 87
Stem cell biology in the craniofacial apparatus (cont’d)
periodontal ligament stem cells, 86–87
stem cell properties of CNCCs and their potential for alveolar bone regeneration, 83–85
stem cells from apical papilla, 86
stem cells from human exfoliated deciduous teeth, 86
Stem cell factor, 82
Stem cells from apical papilla, 85, 86, 193–194
cell transplantation of, for craniofacial regenerative applications, 93–97
diverse use of, in medical fields, 79
periodontal tissue engineering and, 204
regenerating functional dentin-pulp complex and, 215
tissue regeneration and, 214
Stem cells for tooth regeneration, 192–195
from apical papilla, 193–194
bone marrow stromal cells, 194
dental epithelial stem cells, 194
dental tooth bud cells, 194
DPSCs and SHEDs, 193
embryonic stem cells, 194
induced pluripotent stem cells, 194–195
PDL, 194
selecting appropriate cell source, 192
Stem cell therapy for craniofacial bone regeneration, 93–98
case presentation, 93–95
Stickler syndrome, 113
Strain. See also Mechanical strainone responses to, 49
STRO-1, 85, 223
Stromal-derived factor-1, hydroxyapatite tooth scaffolds with, 196
Styloid process, human fetal head, 4
Sunbaths
bone health and, 311
ricketts prevention and, 314
Sunlight
current hysteria about exposure to, 323
demonization of, 319
osteomalacia and lack of exposure to, 327
ricketts and lack of exposure to, 312, 327
Sun safety, osteoporosis and increasing popularity of, 319
Sunscreen, soaring sales of, 320
Sunshine hypothesis, ricketts and, 312
Supernumerary teeth, cleidocranial dysplasia and, 60–61
Syk
OC differentiation and, 19
OC function and, 22
Symphysial cartilage, mandibular development and, 8
Syraptotagmin VII (Syt VII), 23
Syndactyly, in sclerosteosis, 73
Syndecans, 232
SZ. See Sealing zone
TAK1, 51
Talin, 21
tall stature, in sclerosteosis, 73
Tamoxifen, 336
Tannerella forsythia, 237
Tanning, 323
tartrate-resistant acid phosphatase, 17, 19, 25, 107
Taubes, Gary, 318
Tbx1, 9, 80
tcell receptor (TCR), 240
Th17 response, periodontal disease and, 240
Th1 response, periodontal disease and, 240
Th2 response, periodontal disease and, 240
Th1 response, periodontal disease and, 240
Th2 response, periodontal disease and, 240
Th17 response, periodontal disease and, 240
Th17 response, periodontal disease and, 241
Thrombospondin, 102
Thyroid cartilage, human fetal head, 4
Tibia
Paget’s disease and, 286
Tiludronate
antiresorptive potency of, currently on U.S. market, 333t
Tissue engineering, 95, 201
Tissue-nonspecific alkaline phosphatase, 105, 107, 175, 178, 183
Tissue regeneration
dental pulp stem cells, 85–86
guided, defined, 201
new treatment paradigms for, 93
PDLSCs and, 86–87
scaffolds and growth factors in, 195
SCAP and, 86
SHED and, 86
in situ, 192
tooth structures and, 85
two key elements for, 214
Tissue repair cells, development of, 93
T lymphocytes, 87
Tooth agenesis, 129–134
Tooth absence, biomechanical
Tongue thrust, open-bite malocclusions
Tongue pressures, loads on teeth and,
Tongue cribs, 260
Tomes’ processes, of ameloblasts, 154,
Toll-like receptors, 238
Tocopherol, for ORN, 332
Tociluzumab, 243
TNALP , 105
TNFalpha, rheumatoid arthritis,
TNAP deficieny, HPP and, 16
TNAP .
Tooth development, 119–125
Tooth crowns
Tooth bud regeneration, 192
Tooth bud method, for tooth
regeneration, 193
Tooth bud regeneration, 192
Tooth crowns
development of, 119
morphogenesis of, 123
Tooth development, 119–125
Tooth germ survival, postmigratory
Tooth mobility, variation in, 259
Tooth replacement and regeneration,
Tooth replacement and regeneration,
Tooth root, 121, 122
Tooth root, 99
gender and quality of, 282
metallic alterations and, 279
TRAF6, 19
Trancytosis domain, 20
Transcriptional control of osteoblast
lineage, 44, 44–46
Transcription factors
Transepithelial transport, 9
Tumoral calcinosis, 44
Tumor necrosis factors, mechanical
forces and, 228
Ultraviolet rays (UVR), world map of
Ultrasonic bone densitometry, 11
Ultrasound, cleft detection with, 14
Ultrasound, cleft detection with, 14
Uncoupling
Index
Unmineralized bone extracellular matrix (osteoid), light and transmission electron micrographs showing, 100
Unprocessed food hypothesis, late twentieth-century defeat of and advent of osteoporosis, 318–320
Unprocessed foods, processed foods vs., 317–318
Upper lip, formation of, 13
UV therapy, anti-rachitic effects and, 312
Unprocessed food hypothesis, late
Van Buchem disease, 71–76
classification and characteristics of, 71
clinical features of sclerosteosis vs., 75t
genetic background, 71
orofacial bone vs. tubular bone in, 75
photographs and radiographs of patients with, 74
surgical removal of excessive bone, complications, 75–76
Van der Woude’s syndrome, 13
Van Leeuwenhoek, Anton, 169
Vascular cell adhesion molecule 1, 85
Vascular endothelial growth factor, 197
bone healing and, 52
cell-homing methods for tooth regeneration and, 196
CNCC migration and, 80
pulp fibroblasts harvested from third molar teeth and, 193
tissue regeneration and, 215
Vascular theory for osteonecrosis, 68
Vasculature of periodontium, 223–224
Vav3, 22
VBD. See Van Buchem disease
VCAM-1. See Vascular cell adhesion molecule 1
VDRE. See Vitamin D response element
Vegetable oils, heart health and, 312
VEGF. See Vascular endothelial growth factor
Vegf, 10
Velocardiofacial syndrome, 13
Velocephalometric analysis, 19
Versican, 221
Vertebrate tooth, composition of, 135
Vesicular trafficking, 24
Vesicular transport, bone resorption and, 23
Vinculin, 21
Vindas, Adolf, 297
Viscerocranium, 3
primitive vertebrate cranial skeleton, 4
“Vitamania,” 318
Vitamin A, 318
overall mortality risk and, 320t
Vitamin B6, overall mortality risk and, 320t
Vitamin B12, overall mortality risk and, 320t
Vitamin C, overall mortality risk and, 320t
Vitamin D
advertisements for, 316, 316, 317
caries risk and, hypotheses related to, 321–322
identification of, 313
mineralization and, 178
nutritionism hypothesis and, 315
physiological importance of, 327
synthetic, lack of understanding about, 318
Vitamin D deficiency, 327–330
age-related osteoporosis and, 282
case presentation, 328–329
discussion, 329–330
impact of, in mouth and dental management, 327–328
osteoporosis and, 278
rickets and, 297, 298
Vitamin D-fortified foods, rickets prevention and, 314
Vitamin-D resistant rickets, PHEX mutations and, 301
Vitamin D response element, 48
Vitamin D supplements, 318
adult U.S. population and consumption of, 320
calcium supplementation co-administered with, 320t, 321
for hypocalcemia, 298
osteomalacia treatment and, 327
overall mortality risk and bone fractures in adults/seniors, 320t
positive benefits for oral cavity and, 282
systematic review on effects of, on caries risk in erupting teeth, 322
Vitamin E, overall mortality risk and, 320t
Vitamin health claims, legislative efforts for, 132
Vitamins
birth of nutritionism and, 314–316
mortality risk and fracture risk associated with, 320t
unbridled marketing of, 1920s, 316–317
Vitronecitin receptor (alpha v), 21, 222
VPI. See Velopharyngeal insufficiency
V365A mutation, 132
Vitamin-D resistant rickets, PHEX mutations and, 301
Vitamin-D resistant rickets, PHEX mutations and, 301
WASP. See Wiskott-Aldrich syndrome protein
WASP-interacting protein, 21
WD repeat domain 72 (WDR72), 158
Weight-bearing exercise, bone mass increase and, 49
Whole-tooth regeneration, 195–196
bioengineered organ germ method, 195–196
Windaus, 313
WIP. See WASP-interacting protein
Wire configurations, new superelastic, 269
Wiskott-Aldrich syndrome protein, 21
Wnt, crown development and, 173
Wnt10b, 25
Wnt family
Wnt family, tooth development and, 84, 122, 192
Wnt pathway
bone regeneration and, 52
coregulator wasp vs. adipocyte lineages, 51
tooth replacement and regeneration and, 124
Wnt/b-catenin pathway, role of, in osteocyte function, 65–66
Wnt signaling
bone healing and, 52
NCC induction and, 79
sclerostin and, 72, 73
tooth development and, 123
Women
lactase inhibitors and osteoporosis in, 284
hyperparathyroidism in, 298
osteoporosis in, 278
primary hyperparathyroidism and, 284
trabecular bone quality and, 282
Women’s Health Initiative, 336
Wounding of periodontal ligament, 225
Woven bone, 6, 7, 103
Wurtman, Richard, 317
X chromosome, X-linked disorders and, 132
Xenografts, 93, 201
X-linked disorders, genetic counseling for, 132
X-linked hypophosphatemia (XLH), 197, 301
X-linked disorders, genetic counseling for, 132
X-linked tooth agenesis affecting mostly incisors, 131, 131–132, 132
Y chromosome, 132
Young adults, bone formation in, 298
Zinc oxide eugenol (ZOE), 251
Zoledronic acid, antiresorptive potency of, currently on U.S. market, 333t
Zometa, antiresorptive potency of, currently on U.S. market, 333t
Z-score, osteoporosis and, 277
Zygomatic arch, human fetal head, 4
Zygomatic (or malar) cartilage, 8