Contents

Foreword to the first English edition
Preface to the first English edition
Preface to second edition
Acknowledgments
Introduction

PART 1 SEPARATION METHODS

1 General aspects of chromatography
1.1 General concepts of analytical chromatography
1.2 The chromatogram
1.3 Gaussian-shaped elution peaks
1.4 The plate theory
1.5 Nernst partition coefficient (K)
1.6 Column efficiency
1.7 Retention parameters
1.8 Separation (or selectivity) factor between two solutes
1.9 Resolution factor between two peaks
1.10 The rate theory of chromatography
1.11 Optimization of a chromatographic analysis
1.12 Classification of chromatographic techniques
Problems

2 Gas chromatography
2.1 Components of a GC installation
2.2 Carrier gas and flow regulation
2.3 Sample introduction and the injection chamber
2.4 Thermostatically controlled oven
2.5 Columns
2.6 Stationary phases
2.7 Principal gas chromatographic detectors
2.8 Detectors providing structural data
2.9 Fast chromatography
2.10 Multi-dimensional chromatography
2.11 Retention indexes and stationary phase constants
Problems
3 High-performance liquid chromatography

- **3.1** The beginnings of HPLC
- **3.2** General concept of an HPLC system
- **3.3** Pumps and gradient elution
- **3.4** Injectors
- **3.5** Columns
- **3.6** Stationary phases
- **3.7** Chiral chromatography
- **3.8** Mobile phases
- **3.9** Paired-ion chromatography
- **3.10** Hydrophobic interaction chromatography
- **3.11** Principal detectors
- **3.12** Evolution and applications of HPLC

Problems

4 Ion chromatography

- **4.1** Basics of ion chromatography
- **4.2** Stationary phases
- **4.3** Mobile phases
- **4.4** Conductivity detectors
- **4.5** Ion suppressors
- **4.6** Principle and basic relationship
- **4.7** Areas of the peaks and data treatment software
- **4.8** External standard method
- **4.9** Internal standard method
- **4.10** Internal normalization method

Problems

5 Thin layer chromatography

- **5.1** Principle of TLC
- **5.2** Characteristics of TLC
- **5.3** Stationary phases
- **5.4** Separation and retention parameters
- **5.5** Quantitative TLC

Problems

6 Supercritical fluid chromatography

- **6.1** Supercritical fluids: a reminder
- **6.2** Supercritical fluids as mobile phases
- **6.3** Instrumentation in SFC
- **6.4** Comparison of SFC with HPLC and GC
- **6.5** SFC in chromatographic techniques

7 Size exclusion chromatography

- **7.1** Principle of SEC
- **7.2** Stationary and mobile phases
- **7.3** Calibration curves
- **7.4** Instrumentation
- **7.5** Applications of SEC

Problems

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 High-performance liquid chromatography</td>
<td>63</td>
</tr>
<tr>
<td>4 Ion chromatography</td>
<td>93</td>
</tr>
<tr>
<td>5 Thin layer chromatography</td>
<td>117</td>
</tr>
<tr>
<td>6 Supercritical fluid chromatography</td>
<td>127</td>
</tr>
<tr>
<td>7 Size exclusion chromatography</td>
<td>135</td>
</tr>
</tbody>
</table>
8 Capillary electrophoresis and electrochromatography 145
8.1 From zone electrophoresis to capillary electrophoresis 145
8.2 Electrophoretic mobility and electro-osmotic flow 148
8.3 Instrumentation 152
8.4 Electrophoretic techniques 155
8.5 Performance of CE 157
8.6 Capillary electrochromatography 159
Problems 161

PART 2 SPECTROSCOPIC METHODS 165

9 Ultraviolet and visible absorption spectroscopy 167
9.1 The UV/Vis spectral region and the origin of the absorptions 167
9.2 The UV/Vis spectrum 169
9.3 Electronic transitions of organic compounds 171
9.4 Chromophore groups 173
9.5 Solvent effects: solvatochromism 174
9.6 Fieser–Woodward rules 176
9.7 Instrumentation in the UV/Visible 178
9.8 UV/Vis spectrophotometers 181
9.9 Quantitative analysis: laws of molecular absorption 186
9.10 Methods in quantitative analysis 190
9.11 Analysis of a single analyte and purity control 192
9.12 Multicomponent analysis (MCA) 193
9.13 Methods of baseline correction 196
9.14 Relative error distribution due to instruments 198
9.15 Derivative spectrometry 200
9.16 Visual colorimetry by transmission or reflection 202
Problems 203

10 Infrared spectroscopy 207
10.1 The origin of light absorption in the infrared 207
10.2 Absorptions in the infrared 208
10.3 Rotational–vibrational bands in the mid-IR 208
10.4 Simplified model for vibrational interactions 210
10.5 Real compounds 212
10.6 Characteristic bands for organic compounds 212
10.7 Infrared spectrometers and analysers 216
10.8 Sources and detectors used in the mid-IR 221
10.9 Sample analysis techniques 225
10.10 Chemical imaging spectroscopy in the infrared 230
10.11 Archiving spectra 232
10.12 Comparison of spectra 233
10.13 Quantitative analysis 234
Problems 238
CONTENTS

11 Fluorimetry and chemiluminescence

11.1 Fluorescence and phosphorescence 241
11.2 The origin of fluorescence 243
11.3 Relationship between fluorescence and concentration 245
11.4 Rayleigh scattering and Raman bands 247
11.5 Instrumentation 249
11.6 Applications 253
11.7 Time-resolved fluorimetry 255
11.8 Chemiluminescence 256
Problems 259

12 X-ray fluorescence spectrometry

12.1 Basic principles 263
12.2 The X-ray fluorescence spectrum 264
12.3 Excitation modes of elements in X-ray fluorescence 266
12.4 Detection of X-rays 271
12.5 Different types of instruments 273
12.6 Sample preparation 277
12.7 X-ray absorption – X-ray densimetry 278
12.8 Quantitative analysis by X-ray fluorescence 279
12.9 Applications of X-ray fluorescence 279
Problems 281

13 Atomic absorption and flame emission spectroscopy

13.1 The effect of temperature upon an element 285
13.2 Applications to modern instruments 288
13.3 Atomic absorption versus flame emission 288
13.4 Measurements by AAS or by FES 290
13.5 Basic instrumentation for AAS 291
13.6 Flame photometers 297
13.7 Correction of interfering absorptions 298
13.8 Physical and chemical interferences 302
13.9 Sensitivity and detection limits in AAS 304
Problems 305

14 Atomic emission spectroscopy

14.1 Optical emission spectroscopy (OES) 309
14.2 Principle of atomic emission analysis 310
14.3 Dissociation of the sample into atoms or ions 311
14.4 Dispersive systems and spectral lines 315
14.5 Simultaneous and sequential instruments 317
14.6 Performances 321
14.7 Applications of OES 323
Problems 324

15 Nuclear magnetic resonance spectroscopy

15.1 General introduction 327
15.2 Spin/magnetic field interaction for a nucleus 328
15.3 Nuclei that can be studied by NMR 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>Bloch theory for a nucleus of spin number $I = 1/2$</td>
<td>331</td>
</tr>
<tr>
<td>15.5</td>
<td>Larmor frequency</td>
<td>333</td>
</tr>
<tr>
<td>15.6</td>
<td>Pulsed NMR</td>
<td>335</td>
</tr>
<tr>
<td>15.7</td>
<td>The processes of nuclear relaxation</td>
<td>339</td>
</tr>
<tr>
<td>15.8</td>
<td>Chemical shift</td>
<td>340</td>
</tr>
<tr>
<td>15.9</td>
<td>Measuring the chemical shift</td>
<td>341</td>
</tr>
<tr>
<td>15.10</td>
<td>Shielding and deshielding of the nuclei</td>
<td>342</td>
</tr>
<tr>
<td>15.11</td>
<td>Factors influencing chemical shifts</td>
<td>342</td>
</tr>
<tr>
<td>15.12</td>
<td>Hyperfine structure – spin–spin coupling</td>
<td>344</td>
</tr>
<tr>
<td>15.13</td>
<td>Heteronuclear coupling</td>
<td>345</td>
</tr>
<tr>
<td>15.14</td>
<td>Homonuclear coupling</td>
<td>347</td>
</tr>
<tr>
<td>15.15</td>
<td>Spin decoupling and particular pulse sequences</td>
<td>352</td>
</tr>
<tr>
<td>15.16</td>
<td>HPLC-NMR coupling</td>
<td>354</td>
</tr>
<tr>
<td>15.17</td>
<td>Fluorine and phosphorus NMR</td>
<td>355</td>
</tr>
<tr>
<td>15.18</td>
<td>Quantitative NMR</td>
<td>356</td>
</tr>
<tr>
<td>15.19</td>
<td>Analysers using pulsed NMR</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>PART 3 OTHER METHODS</td>
<td>367</td>
</tr>
<tr>
<td>16</td>
<td>Mass spectrometry</td>
<td>369</td>
</tr>
<tr>
<td>16.1</td>
<td>Basic principles</td>
<td>369</td>
</tr>
<tr>
<td>16.2</td>
<td>The magnetic-sector design</td>
<td>372</td>
</tr>
<tr>
<td>16.3</td>
<td>‘EB’ or ‘BE’ geometry mass analysers</td>
<td>374</td>
</tr>
<tr>
<td>16.4</td>
<td>Time of flight analysers (TOF)</td>
<td>379</td>
</tr>
<tr>
<td>16.5</td>
<td>Quadrupole analysers</td>
<td>381</td>
</tr>
<tr>
<td>16.6</td>
<td>Quadrupole ion trap analysers</td>
<td>385</td>
</tr>
<tr>
<td>16.7</td>
<td>Ion cyclotron resonance analysers (ICRMS)</td>
<td>387</td>
</tr>
<tr>
<td>16.8</td>
<td>Mass spectrometer performances</td>
<td>389</td>
</tr>
<tr>
<td>16.9</td>
<td>Sample introduction</td>
<td>391</td>
</tr>
<tr>
<td>16.10</td>
<td>Major vacuum ionization techniques</td>
<td>392</td>
</tr>
<tr>
<td>16.11</td>
<td>Atmospheric pressure ionization (API)</td>
<td>397</td>
</tr>
<tr>
<td>16.12</td>
<td>Tandem mass spectrometry (MS/MS)</td>
<td>401</td>
</tr>
<tr>
<td>16.13</td>
<td>Ion detection</td>
<td>402</td>
</tr>
<tr>
<td>16.14</td>
<td>Identification by means of a spectral library</td>
<td>404</td>
</tr>
<tr>
<td>16.15</td>
<td>Analysis of the elementary composition of ions</td>
<td>405</td>
</tr>
<tr>
<td>16.16</td>
<td>Determination of molecular masses from multicharged ions</td>
<td>407</td>
</tr>
<tr>
<td>16.17</td>
<td>Determination of isotope ratios for an element</td>
<td>408</td>
</tr>
<tr>
<td>16.18</td>
<td>Fragmentation of organic ions</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>415</td>
</tr>
<tr>
<td>17</td>
<td>Labelling methods</td>
<td>419</td>
</tr>
<tr>
<td>17.1</td>
<td>The principle of labelling methodologies</td>
<td>419</td>
</tr>
<tr>
<td>17.2</td>
<td>Direct isotope dilution analysis with a radioactive label</td>
<td>420</td>
</tr>
<tr>
<td>17.3</td>
<td>Substoichiometric isotope dilution analysis</td>
<td>421</td>
</tr>
<tr>
<td>17.4</td>
<td>Radio immuno-assays (RIA)</td>
<td>422</td>
</tr>
<tr>
<td>17.5</td>
<td>Measuring radioisotope activity</td>
<td>423</td>
</tr>
<tr>
<td>17.6</td>
<td>Antigens and antibodies</td>
<td>425</td>
</tr>
</tbody>
</table>
17.7 Enzymatic-immunoassay (EIA) 426
17.8 Other immunoenzymatic techniques 429
17.9 Advantages and limitations of the ELISA test in chemistry 430
17.10 Immunofluorescence analysis (IFA) 431
17.11 Stable isotope labelling 431
17.12 Neutron activation analysis (NAA) 432
Problems 437

18 Elemental analysis 441
18.1 Particular analyses 441
18.2 Elemental organic microanalysis 442
18.3 Total nitrogen analysers (TN) 445
18.4 Total sulfur analysers 447
18.5 Total carbon analysers (TC, TIC and TOC) 447
18.6 Mercury analysers 450
Problems 451

19 Potentiometric methods 453
19.1 General principles 453
19.2 A particular ISE: the pH electrode 455
19.3 Other ion selective electrodes 457
19.4 Slope and calculations 460
19.5 Applications 463
Problems 463

20 Voltammetric and coulometric methods 465
20.1 General principles 465
20.2 The dropping-mercury electrode 467
20.3 Direct current polarography (DCP) 467
20.4 Diffusion current 468
20.5 Pulsed polarography 470
20.6 Amperometric detection in HPLC and HPCE 472
20.7 Amperometric sensors 472
20.8 Stripping voltammetry (SV) 478
20.9 Potentiostatic coulometry and amperometric coulometry 480
20.10 Coulometric titration of water by the Karl Fischer reaction 481
Problems 484

21 Sample preparation 487
21.1 The need for sample pretreatment 487
21.2 Solid phase extraction (SPE) 488
21.3 Immunoaffinity extraction 490
21.4 Microextraction procedures 491
21.5 Gas extraction on a cartridge or a disc 493
21.6 Headspace 494
21.7 Supercritical phase extraction (SPE) 496
21.8 Microwave reactors 498
21.9 On-line analysers 498
22 Basic statistical parameters 501
 22.1 Mean value, accuracy of a collection of measurements 501
 22.2 Variance and standard deviation 504
 22.3 Random or indeterminate errors 504
 22.4 Confidence interval of the mean 506
 22.5 Comparison of results – parametric tests 508
 22.6 Rejection criteria Q-test (or Dixon test) 510
 22.7 Calibration curve and regression analysis 511
 22.8 Robust methods or non-parametric tests 513
 22.9 Optimization through the one-factor-at-a-time (OFAT) experimentation 515
 Problems 516

Solutions 519

Appendix – List of acronyms 561

Bibliography 565

Table of some useful constants 567

Index 569