Contents

Preface xii
Dedication and Acknowledgments xiii
List of Symbols xiv

1 Soil Structure 1

1.1 Volume relationships 1
 1.1.1 Voids ratio \((e)\) 2
 1.1.2 Porosity \((n)\) 3
 1.1.3 Degree of saturation \((S_r)\) 3

1.2 Weight–volume relationships 6
 1.2.1 Bulk densities 7
 1.2.2 Dry densities 8
 1.2.3 Saturated densities 8
 1.2.4 Submerged densities \((\gamma’)\) 9
 1.2.5 Density of solids \((\gamma_s)\) 10
 1.2.6 Specific gravity \((G_s)\) 10
 1.2.7 Moisture content \((m)\) 11
 1.2.8 Partially saturated soil 12
 1.2.9 Relative density \((D_r)\) 18

1.3 Alteration of soil structure by compaction 20
 1.3.1 Laboratory compaction tests 21
 1.3.2 Practical considerations 26
 1.3.3 Relative compaction \((C_r)\) 27
 1.3.4 Compactive effort 27
 1.3.5 Under- and overcompaction 28
 1.3.6 Site tests of compaction 28

1.4 California bearing ratio (CBR) test 30

1.5 The pycnometer 35

Supplementary problems for Chapter 1 39

2 Classification of Cohesive Soils 43

2.1 Atterberg Limits 43
 2.1.1 Liquid Limit \((LL)\) 43
 2.1.2 Plastic Limit 48
 2.1.3 Shrinkage Limit 50
 2.1.4 Swelling of cohesive soils 56
 2.1.5 Saturation Limit \((Z)\%)\) 56
 2.1.6 Relationship between the limits 57
 2.1.7 Linear shrinkage and swelling 59

2.2 Consistency indices 64
 2.2.1 Plasticity index \((PI)\) 64

<table>
<thead>
<tr>
<th>2.2.2</th>
<th>Relative consistency index (RI)</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>Liquidity index (LI)</td>
<td>64</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of soils by particle size</td>
<td>69</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Sieve analysis</td>
<td>69</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Uniformity coefficient (U)</td>
<td>73</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Filter design</td>
<td>74</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Typical problems</td>
<td>77</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Combination of materials</td>
<td>78</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Sedimentation tests</td>
<td>85</td>
</tr>
<tr>
<td>Supplementary problems for Chapter 2</td>
<td>91</td>
<td></td>
</tr>
</tbody>
</table>

3 Permeability and Seepage

3.1 Coefficient of permeability (k)
- 3.1.1 Constant head test
- 3.1.2 Falling head test

3.2 Seepage velocity (v_s)

3.3 Determination of the value of k
- 3.3.1 Constant head test
- 3.3.2 Falling head test

3.4 Field pumping tests
- 3.4.1 Unconfined layer
- 3.4.2 Radius of influence (R)
- 3.4.3 Confined layer under artesian pressure (\(\sigma_A\))

3.5 Permeability of stratified soil

3.6 Flow nets
- 3.6.1 Flow lines (FL)
- 3.6.2 Head loss in a flow channel
- 3.6.3 Equipotential lines (EPL)
- 3.6.4 Flow net construction
- 3.6.5 Application of flow nets
- 3.6.6 Seepage flowrate (Q)
- 3.6.7 Seepage pressure
- 3.6.8 Seepage force (S)

3.7 Erosion due to seepage

3.8 Prevention of piping

3.9 Flow net for earth dams

Supplementary problems for Chapter 3

4 Pressure at Depth Due to Surface Loading

4.1 Concentrated point load

4.2 Concentrated line load

4.3 Uniform strip loading (Michell’s solution)

4.4 Bulb of pressure diagrams

4.5 Vertical pressure under triangular strip load

4.6 Vertical pressure under circular area

4.7 Rectangular footing

4.8 Footings of irregular shape

4.9 Pressure distribution under footings
- 4.9.1 Influence of footing
- 4.9.2 Influence of loading

4.10 Linear dispersion of pressure

Supplementary problems for Chapter 4

<table>
<thead>
<tr>
<th>Supplementary problems for Chapter 2</th>
<th>91</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary problems for Chapter 3</td>
<td>135</td>
</tr>
<tr>
<td>Supplementary problems for Chapter 4</td>
<td>173</td>
</tr>
</tbody>
</table>
Contents

5 Effective Pressure (σ')
- 5.1 Unloaded state
- 5.2 Loaded state
- 5.3 Flooded state
- 5.4 Types of problem
- 5.5 Effect of seepage on shallow footings
- 5.6 Ground water lowering (at atmospheric pressure)
- 5.7 Reduction of artesian pressure
- 5.8 Capillary movement of water
 - 5.8.1 Equilibrium moisture content (m_e)
 - 5.8.2 Soil suction (S_s)
Supplementary problems for Chapter 5

6 Shear Strength of Soils
- 6.1 Coulomb-Mohr Theory
 - 6.1.1 Stresses on the plane of failure
 - 6.1.2 Friction and cohesion
 - 6.1.3 Apparent cohesion
- 6.2 Stress path
 - 6.2.1 Stress path failure envelope
 - 6.2.2 Variation of stress path
- 6.3 Effect of saturation
 - 6.3.1 Effective Mohr’s circle
 - 6.3.2 Effective stress path (ESP)
- 6.4 Measurement of shear strength
 - 6.4.1 Triaxial tests
 - 6.4.2 Variation of pore pressure
 - 6.4.3 Total excess pore pressure
 - 6.4.4 Unconsolidated-undrained tests
 - 6.4.5 Quick-undrained test
 - 6.4.6 Consolidated-undrained (CU) test
 - 6.4.7 Consolidated-drained (CD) test
 - 6.4.8 Unconfined compression strength of clays
 - 6.4.9 Standard shear box test
 - 6.4.10 The Vane shear test
 - 6.4.11 Residual shear strength
- 6.5 Thixotropy of clay
- 6.6 Undrained cohesion and overburden pressure
Supplementary problems for Chapter 6

7 Consolidation and Settlement
- 7.1 Consolidation
- 7.2 The pressure-voids ratio curve
 - 7.2.1 Analytical solution
 - 7.2.2 Equation of the σ'--e curve
 - 7.2.3 Alternative conventional procedure
 - 7.2.4 Graphical solution
- 7.3 Forms of the σ'--e curve
 - 7.3.1 Normally consolidated clay
7.3.2 Overconsolidated clays 280

7.4 Coefficient of compressibility (α_v) 281

7.5 Coefficient of volume change (m_v) 282
 7.5.1 Voids ratio method 282
 7.5.2 Direct method 282

7.6 Estimation of settlement 284
 7.6.1 Voids ratio method 286
 7.6.2 Method using m_v 288
 7.6.3 Direct method 289

7.7 Rate of consolidation 291
 7.7.1 Variation of excess pore pressure with time 292
 7.7.2 Typical pore pressure distributions 293
 7.7.3 Estimation of time 294
 7.7.4 Coefficient of consolidation (c_v) 295

7.8 Pore pressure isochrones 301
 7.8.1 Average percentage consolidation 302

7.9 Coefficient of permeability (k) 310

7.10 Time from similarity 310

7.11 Total settlement 311
 7.11.1 Initial compression 311
 7.11.2 Primary consolidation 311
 7.11.3 Secondary consolidation 312

Supplementary problems for Chapter 7 314

8 Lateral Earth Pressure 319

8.1 Resistance to active expansion 320

8.2 The value of K_0 321

8.3 Stress path representation 322

8.4 Rankine’s theory of cohesionless soil 324
 8.4.1 Stress path representation (Lambe) 330

8.5 Rankine-Bell theory for $c-\phi$ soil 334
 8.5.1 Tension cracks 335
 8.5.2 Effect of surcharge (q kN/m) on z_0 336
 8.5.3 Water in the cracks only 336

8.6 Rankine-Bell theory for c-soil 336

8.7 Pressure–force and its line of action 336
 8.7.1 Triangular diagram for uniform soil 337
 8.7.2 Triangular diagram for water 337
 8.7.3 Rectangular diagram for surcharge only 338

8.8 Wall supporting sloping surface 342

8.9 General formulae for $c-\phi$ soil 342
 8.9.1 Active case 343
 8.9.2 Passive case (with surcharge) 345

8.10 Formulae for pure clay ($\phi = 0$) 349

8.11 Height of unsupported clay 350

8.12 Wedge theories 350
 8.12.1 Procedure for cohesionless soil 351
8.12.2 Procedure for cohesive soil 355
8.12.3 Point of application of $P_a(x)$ 359
8.12.4 Effect of static water table 360
8.13 Stability of retaining walls 360
 8.13.1 Gravity walls 360
 8.13.2 Cantilever walls 361
 8.13.3 Buttress and counterfort walls 361
 8.13.4 Stability check 362
8.14 Sheet piles 368
 8.14.1 Cantilever sheet pile walls 369
 8.14.2 Factor of safety 370
 8.14.3 Bending of sheet piles 374
 8.14.4 Sheet pile in cohesive soils 375
8.15 Anchored sheet pile walls 375
 8.15.1 Free-earth support method 376
 8.15.2 Fixed-earth support method 384
 8.15.3 Anchorage 390
 8.15.4 Length of tie rod (L) 390
 8.15.5 Stability of anchors 390
8.16 Effect of ground water 393
8.17 Stability of deep trenches 400
 8.17.1 Horizontal bracing 400
8.18 Bentonite slurry support 406
 8.18.1 Trench in clay 407
 8.18.2 Trench in sand 408
Supplementary problems for Chapter 8 413

9 Bearing Capacity of Soils 420
9.1 Terminology 420
 9.1.1 Foundation pressure (σ) 420
 9.1.2 Net foundation pressure (σ_n) 421
 9.1.3 Effective overburden pressure (σ'_0) 421
 9.1.4 Ultimate bearing capacity (q_u) 421
 9.1.5 Net ultimate bearing capacity (q'_u) 421
 9.1.6 Safe net bearing capacity (q_{sn}) 422
 9.1.7 Safe bearing capacity (q_s) 422
 9.1.8 Allowable foundation pressure (σ_a) 424
 9.1.9 Presumed bearing values 424
9.2 Shallow strip footing 424
 9.2.1 Terzaghi’s equation for q_u 425
 9.2.2 Effect of static water table 428
9.3 Influence of footing shape 435
9.4 Shallow rectangular footing 436
 9.4.1 Method of Fellenius 438
9.5 Deep foundations 439
 9.5.1 Moderately deep foundations 439
9.6 Standard penetration test (SPT) 443
9.7 Pile foundations \(\left(\frac{Z}{B} > 5 \right) \)
9.7.1 Types of pile 446
9.8 Some reasons for choosing piles 449
9.9 Some reasons for not choosing piles 451
9.10 Effects necessitating caution 451
9.11 Negative skin friction 453
9.12 Stress distribution around piles 455
9.13 Load-carrying capacity of piles 455
9.13.1 Static formulae 456
9.13.2 End-bearing resistance \((Q_e) \) 456
9.13.3 Shaft resistance \((Q_s) \) 457
9.13.4 Ultimate carrying capacity of pile 458
9.13.5 Allowable carrying capacity of piles \((Q_a) \) 458
9.13.6 Negative skin friction \((Q_f) \) 458
9.14 End bearing resistance and SPT 464
9.15 Influence of pile section on \(Q_u \) 465
9.16 Group of piles 465
9.16.1 Eccentrically loaded pile group 468
9.16.2 Settlement of pile groups 471
9.16.3 Raking piles 472
Supplementary problems for Chapter 9 474

10 Stability of Slopes 479
10.1 Short-term and long-term stability 479
10.2 Total stress analysis (cohesive soils) 480
10.2.1 Homogeneous, pure clay \((\phi_u = 0) \) 480
10.2.2 Increasing the value of \(F_s \) 481
10.2.3 Minimum value of \(F_s \) 482
10.2.4 Potential slip surface 482
10.2.5 Determination of the factor of safety 483
10.2.6 Homogeneous \(c-\phi \) soil (total stress analysis) 497
10.2.7 Stratified slopes 500
10.2.8 Slopes under water 501
10.2.9 Taylor's stability numbers 505
10.3 Effective stress analysis (cohesive soils) 513
10.3.1 Method of slices (radial procedure) 513
10.3.2 Bishop's conventional method 518
10.3.3 Bishop's rigorous iterative method 519
10.4 Stability of infinite slopes 523
Supplementary problems for Chapter 10 528

11 Eurocode 7 530
11.1 Introduction 530
11.2 Recommended units 530
11.3 Limit states 531
11.4 Design procedures 531
11.5 Verification procedures 532
11.6 Application of partial factors 534
About the companion website

This book's companion website is at www.wiley.com/go/bodo/soilmechanics and offers invaluable resources for students and lecturers:

- Supplementary problems
- Solutions to supplementary problems

www.wiley.com/go/bodo/soilmechanics