INDEX

A
absenteeism, sustainable schools, 4–5, 143
acoustics, 3, 16–17, 62–70
background noise, 62–63
building structure and envelope, 124
carpet tiles, 203
ceiling finishes, 67, 204, 206, 256
daylighting, 68–69
guidelines, 66, 70
HVAC systems, 17, 63, 138
materials, 66–67
mechanical systems, 67–68
room reverberation, 64
sound isolation, 64–66
wall finishes, 202
adaptation, future prospects, 283–285
adaptive reuse
case study, 108–109, 213–215
funding, life cycle costing, 41–42
resource efficiency, 12–13
Aga Khan Award, 55, 56, 57
age level. See developmental considerations
air conditioning, 16. See also heating, ventilating, and air-conditioning (HVAC) systems
air quality. See indoor air quality
air velocity, HVAC systems, 138
allergens, 73, 271
Alliance to Save Energy (ASE), 268
alternative energy generation, future prospects, 283–285
alternative project delivery methods, costs and bidding process, 224–227
aluminum windows, 120
American Academy of Pediatrians, 72
American Institute of Architects (AIA), 22
American National Standards Institute (ANSI), 63, 64, 66, 69, 70, 125, 199
American Society for Testing and Materials (ASTM), 69
American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), 125, 138
Andrew H. Wilson Elementary School (New Orleans, Louisiana), 279–280
A. P. Tureaud Elementary School (New Orleans, Louisiana), 277–278
architectural contracts, planning strategies, 24–26. See also cost and bidding process
architectural style, design strategies, 54–55. See also design process and strategies
architecture, sustainability concept, 2
Architecture Involution LLC, 129–131
artificial lighting systems. See daylighting; lighting systems
Arup Associates, 48–51
asbestos, ceiling finishes, 205
asbestos removal, 236–237
asphalt, heat islands, 171
asthma, 271
astronomy, school culture, 254
athletic fields
landscaping, 172–174
lighting, 180
playgrounds, landscaping, 180–184
stormwater/groundwater management, 170
Atkins, Doug, 79, 166
attendance, sustainable schools, 4–5, 143
attention deficit disorder, landscaping, 164
attitudes, community factors, sustainable schools, 6
auditorium
acoustics, 64
daylighting, 93, 95
automobile, site selection, 31
B
Bacich School (Kentfield, California), 7
background noise, acoustics, 62–63
balloon framing, wall design, 114–115
Bangladesh boat schools, 283–285
bathrooms. See restrooms
batteries, energy efficiency, 38
batt insulation, 118
bicycles, 29–31, 178
bidding process. See cost and bidding process
bioswale, stormwater/groundwater management, 169
bird’s-eye view, design strategies, 53
Blach School (Los Altos, California), 86, 88, 105–107, 250
blinds, window treatments, 122–123
boat schools (Bangladesh), 283–285
body metaphor
daylighting, 85
design strategies, 53
bonds, capital funding, 39–41
brainstorming, integrated design planning, 28–29
Braungart, Michael, 197
Bronx Charter School for the Arts (Hunts Point, Bronx, New York), 108–109
Brown v. Board of Education, 31
Brundtland Commission Report, 1–2, 16
budgets. See also cost and bidding process; economic factors; funding; life cycle costing
acoustic materials, 67
design strategies, 61
mechanical systems, 67–68
building codes. See also government policy
building type, design strategies, 58
cost and bidding process, 219–220
natural ventilation, HVAC systems, 143
plumbing systems, 151
sustainable schools, 8–9
verification, 238–239
wall design, 112–114
building information management (BIM) systems, operations, 257–258
building materials. See materials
building paper, insulation, 118
built environment, economic impact of, 2
building standards, cost and bidding process, 219–220
building structure and envelope, 111–135
case study, 129–135
design strategies, 53, 61
doors, 124
insulation, 117–119
LEED, 128, 153
overview, 111–112
roof design, 124–127
wall design, 112–117. See also wall design
water and moisture control, 120
weatherizing, 119
windows, 120–122
window treatments, 122–123
building systems, design strategies, 53
business groups, supplementary funding, 43–44
bus transportation, site selection, 29–31
C
C. K. Choi Institute of Asian Research (University of British Columbia), 164–165
cafeteria, acoustics, 64. See also food service
campus concept. See also landscaping; plantings; site planning and design; solar orientation; topography
case study, 186–195
ingegrated design, 33–36
LEED, 167, 185
sustainable schools, 10
capital funding, 39–41
carbon dioxide
HVAC systems, 138
sustainability concept, 2
Carpet and Rug Institute (CRI), 200–201, 270
carpeting
acoustics, 67
operations and maintenance, 255–256, 270
product certification, 200–201
reverberation, 64
Carson, Rachel, 19, 197
casework, product information, 207–208
caulking, weatherizing, 119
ceiling finishes
acoustics, 67, 204, 206
operations, 256
recommendations for, 204–206
cement sidewalks, 172
Centennial PK-12 School (San Luis, Colorado), 116, 155–158
central HVAC systems, individual systems compared, 139–140
centrifugal chiller water tubes, 268
certification, product information, 198–200
Chartwell School (Seaside, California), 77–79
Chez Panisse Foundation, 263
chilled beam cooling, HVAC systems, 146, 147
Choi, C. K., 164–165
CHPS (Collaborative for High Performance Schools)
acoustics, 66, 69–70
campus design, 167
case study, 79, 105–107, 162
commissioning, 17, 239
daylighting, 97
future directions, 288
planning strategies, 26, 27
product information, 199–200, 201
sustainable schools, 8–9, 21
verification, 238–239
Christy, E. A., 277–280
Chum Creek Outdoor Education Centre, Chum Creek, Victoria, Australia, 192–95
classroom design
HVAC systems, 139–140
lighting requirements, 91–92
sustainable schools, 14
cleaning products, maintenance, 274–275
clerestory windows, daylighting, 96–101. See also daylighting
climate
daylighting, 87–89
design strategies, 56–57
doors, 124
HVAC systems, 143, 146, 195
integrated design, 36
roof design, 124–125
spatial considerations, 60
thermal comfort, 16, 17
water and moisture control, 120
windows, 121–122
climate change, sustainability concept, 1–2, 19
coatings, product information, 207
codes. See building codes
cogeneration, HVAC systems, 150
Collaborative for High Performance Schools (CHPS). See CHPS (Collaborative for High Performance Schools)
comfort, HVAC systems, 137–138
commissioning requirements
case study, 239–240
costs and bidding process, 224
monitoring, 259–260
operations, 257
sustainable schools, 17
community-based planning, sustainable schools, 7–8, 19, 22. See also planning strategies
community factors. See also neighborhoods
case study, 45–47, 155–158, 213–215
daylighting, 87
future prospects, 285–288
integrated design, 31–33
operations, 264–265
supplementary funding, 43–44
sustainable schools, 6
community organizing, 22
compost, landscaping, 174, 177
computer equipment, environmental impact, 208
computer modeling
BIM systems, 257–258
daylighting, 188
carbon block, wall design, 114–115
concrete floor covering, product certification, 201–202
Conoco Phillips refinery, 43
construction costs, sustainable schools, 3, 6
construction management multiprime methods, project delivery methods, 226–227
construction manager at risk methods, project delivery methods, 226–227
construction process, 231–244. See also cost and bidding process; wall design commissioning, 239–240
construction process (cont’d)
community organizing, 22
deconstruction versus demolition, 242–243
indoor air quality, 237
job-site operations, 232–235
LEED, 244
planning, contractor participation in, 231–232
prefabrication, 240–242
sustainable schools, 3, 6, 218–219
verification, 238–239
wall design, 112–114
waste output and waste management, 218, 236–237
Construction Specification Institute, 137
contextual concerns, design strategies, 54–55
contractors, project delivery methods, 226–227
contracts. See architectural contracts; cost and bidding process
controls
HVAC systems, 140, 143, 150–151
lighting systems, 92, 102–103
operations, 259–60, 264–265
cool roof, 124–125
Cool Roof Rating Council, 125
copying machines, indoor air quality, 208
cost and bidding process, 217–230. See also budgets; economic factors; funding; life cycle costing
alternative project delivery methods, 224–227
bidding, 227–230
contracts, 227
high cost perceptions, 219–224
overview, 217–219
cost cutting, sustainability concept, 229–230
counters, casework and furnishings, 207–208
Cradle-to-Cradle approach, 197–198
cross ventilation, HVAC systems, 144
culture
case study, 74–76
daylighting, 87
school culture, 246–247
D
dark skies, 178–179, 254
daylighting, 83–110. See also lighting systems
acoustics, 68–69
artificial lighting systems and, 83, 92, 102–103
benefits of, 83–86
building design, 93–96
case study, 80–81, 105–109, 187–188
ceiling finishes, 205
classroom design, 14–15, 50
costs and bidding process, 222
energy efficiency, 12, 76, 131
integrated design, 9
lighting requirements, 91–92
openings design, 96–101
overview, 83
resources for, 104
school operations, 250
site design, 87–90
sustainable schools, 3, 79, 80
Daylighting Collaborative, 104
decibels, 63, 70. See also acoustics
deconstruction, demolition versus, 242–243
democracy, school operations, 248
demography, sustainability concept, 1–2
demolition, deconstruction versus, 242–243
design build methods, project delivery methods, 226–227
design process and strategies, 53–82. See also integrated design; planning strategies
acoustics, 62–70. See also acoustics
budgets, 61
building type, 58
case study, 74–81
context and function, 54–57
cost estimates, 217
daylighting, 93–96
daylight openings, 96–101
developmental considerations, 71–73
historical perspective, 55–56
HVAC systems, 139
hygiene, 61
integrated design, 9–10, 53–54
overview, 53
robust construction, 61
spatial considerations, 60–61
visual expression, 58–59
design team selection, topics for, 22–24
developmental considerations
design strategies, 71–73
landscaping, 164
dew point, HVAC systems, 146
dimmers, lighting systems, 102–103
direct digital control (DCC) systems, HVAC systems, 150–151
displacement ventilation, HVAC systems, 143
documentation, cost and bidding process, 217–219, 223–224
domestic hot water (DHW) systems, 153
doors
building structure and envelope, 124
weatherizing, 119
dormer window, daylighting, 96
Dow, James, 59
drafts, HVAC systems, 138
drainage
athletic fields, 173–174
stormwater/groundwater management, 168–170
drawings, cost and bidding process, 217–218
drip irrigation systems, 176, 177
Druk White Lotus School (Ladakh, India), 48–51
ductwork, construction process, 237
Dunlop, Alan, 210–212
durability
cost and bidding process, 220
materials, school culture, 254–256
E
earthquake
acoustic materials, 67
wall design, 112–14, 116
economic factors. See also budgets; cost and bidding process; funding; life cycle costing
built environment, 2
cost cutting, 229–230
daylighting, 85
funding, 39–44. See also funding
HVAC systems, 145–146
mechanical systems, 68, 153–154
paving, 171–172
prefabrication, 240–242
school construction, 3
sustainable schools, 5
Eco-Store (Wal-Mart, Lawrence, Kansas), 84
Eggers, Dave, 286
EHDD Architecture, 77–79
826 Valencia (San Francisco, California), 286–287
energy efficiency

campus concept, 33

climate considerations, 36
daylighting, 85, 87, 131
doors, 124
den, 80

future prospects, 283

HVAC systems, 138, 145

mechanical systems, 68, 76, 80

preventive maintenance, 268–269

purchasing programs, 262–263

scale and size, 38

school culture, 253

solar panels, 180

spatial considerations, 60–61

supplementary funding, 42–44

sustainable schools, 2, 3–4, 12, 50–51

Whitman-Hanson Regional High School (Whitman, Massachusetts), 129–131

windows, 120–122

ENgERy STAR, 208, 238–239, 256–257

evelope. See building structure and envelope

environmental curriculum, 10–11. See also operations; school culture

environmental impacts

case study, 186–188

site selection, 29, 35

sustainable schools, 6

wall design, 116

equipment. See finishes, equipment, and furnishings

estimates, bidding process, 228–229

evapotranspiration (ET), 176–177

existing buildings, maintenance costs, 6. See also adaptive reuse; recycling

extended services, planning strategies, 24

fan(s), natural ventilation, 143–145

fertilizers, athletic fields, 173–174

fiberboard, casework and furnishings, 208

fiber cement panels, wall finishes, 117

Field Act (California), 113

fields. See athletic fields; playgrounds

finger plan, daylighting, 86, 87, 93

finishes, equipment, and furnishings, 197–216

acoustics, 67

case study, 210–215

casework and furnishings, 207–208

ceilings, 204–206

computers and office equipment, 208

floor coverings, 200–202

lighting requirements, 92

lockers, 208–209

operations, 254–257

overview, 197–198

paints and coatings, 207

product information, 198–200

recycled, 80

toilet partitions, 209

wall coverings, 202

wall design, 117

fire protection. See also health; safety; toxins

ceiling finishes, 205, 206

cost and bidding process, 220

wall design, 112–114

flexibility

bidding process, 228–229

future prospects, 283–285

integrated design, 39

sustainable schools, 11, 264–265

flooding, stormwater/groundwater management, 168–170

floor(s)

acoustics, 67

radian HVAC systems, 140–141

wall design, 114

floor coverings. See also carpeting

carpets, 200–201

operations, 255–256

resilient flooring, 201–202

FMStA Architects, 192–195

food service

cafeteria, 64

pest control, 272–273

sustainable schools, 263

forced air HVAC systems, 141–143

Forest Stewardship Council (FSC), 116, 202

formaldehyde, 116, 205

foundation work, job-site operations, 235

funding, 39–44. See also budgets; cost and bidding process; economic factors

capital funding, 39–41

life cycle costing, 41–42

supplementary funding, 42–44

fundraising

landscaping, 171–172

supplementary funding, 43–44

furniture, product information, 207–208. See also finishes, equipment, and furnishings

G

games, developmental considerations, 71–73. See also athletic fields; playgrounds

garbage compactor, solar, 180

Garden City Park (space2space, Richmond, British Columbia, Canada), 181

gardens, 184, 263

Gehl Partners Architects, 105–107, 159–162

geoexchange heat pumps, 146–149

geothermal wells, 80, 81

Gladwell, Malcolm, 252

glare, lighting requirements, 92

glass, types of, 122. See also windows

glazing. See windows

Global Green, 277–280

goal setting, planning strategies, 20–28

Gordon Murray & Alan Dunlop Architects, 210–212

Gothic style, 55

government policy. See also building codes

community-based planning, sustainable schools, 7–8

integrated design, 10

public contracting, 221–224

sustainability concept, 2

grading, job-site operations, 235

graffiti, 96, 209. See also vandalism

grass, athletic fields, 173–174

gray water. See also rainwater; stormwater; water supply

irrigation systems, 175–177

sustainable schools, 11, 75, 79, 129–131, 151–152

Greek style, 55

GREENGUARD, 199

Green Label Plus (Carpet and Rug Institute, CRI), 200–201
green roof design
 case study, 132, 134
 described, 126–127
 mechanical systems, 68, 75, 79, 80
 green schools. See sustainable schools
 Green Seed School, 277–278
groundwater management, landscaping, 168–170
 Guilford (North Carolina) Living Machine, 175
gymnasium, spatial considerations, 60–61
H Hagia Sophia dome, 85
Hall, Elizabeth Blodgett, 53
Harris, Arthur, 6
Hazelwood School (Glasgow, Scotland), 210–212
health. See also fire protection; safety; toxins
daylighting, 86
developmental considerations, 71–73
HVAC systems, 138
irrigation systems, 176
maintenance products, 274–275
playgrounds, 181–182
sustainable schools, 4–5
ventilation, 73
wall design, 112–114
hearing, developmental considerations, 72–73
heating, ventilating, and air-conditioning (HVAC) systems, 137–162. See also mechanical systems
acoustics, 17, 63, 138
case study, 155–162, 194–195
climate considerations, 36
comfort, 137–138
commissioning requirements, 240
construction process, 237
design strategies, 53
doors, 124
energy efficiency, 12, 14
high-performance strategies, 145–51
historical perspective, 55
natural ventilation, 143–145
overview, 137
preventive maintenance, 268–271
scale and size, 38
spatial considerations, 60–61
staff training, 258–259
sustainable schools, 5, 67–68, 79, 265
thermal comfort, 16
types of, 138–143
heating costs. See energy efficiency
heat islands, 170–171, 180
heat pumps, geoexchange, 146–149
heat transfer
geoexchange heat pump HVAC systems, 146–149
insulation, 117–119
roof design, 124–125
window treatments, 122–123
heavy metals. See health; toxins; volatile organic compounds (VOCs)
Herman Miller company, 84
Herrington, Susan, 163–165
Heschong Mahone Group, 3, 84
high cost perceptions, cost and bidding process, 219–224
high-performance HVAC strategies, 145–151
historic preservation, case study, 186–188, 277–280
hospitals, daylighting, 86
hot water, HVAC systems, 150, 153
humidity
 HVAC systems, 138, 146
 water and moisture control, 120
Hundertwasser, Friedrich, 59
Hurricane Katrina, 277–280
Hybrid Wetland Living Machine®
 (Guilford, North Carolina), 175
hydrology, 29, 168–170
hygiene, 61, 86
I Illuminating Engineering Society of North America (IESNA), 91, 104, 125
Imperial Valley (California) earthquake (1940), 113
individual HVAC systems, individual systems compared, 139–140
indoor air quality
computers and office equipment, 208
construction process, 237
HVAC systems, 138
insulation, 118–119
LEED, 153
maintenance, 271
materials, 76, 79, 197
pollution sources, 198
sustainable schools, 16
tree planting, 180
ventilation, 73
wall design, 116
information technology, future prospects, 281–283
insects
 athletic fields, 173–174
 construction process, 237
 pest control, 271–173
 playgrounds, 183
 school culture, 254
insulation, 117–119
heat transfer, 117–118
types of, 118–119
wall design, 130
water and moisture control, 120
integrated design, 28–39. See also design process and strategies; planning strategies
campus concept, 33–36
case study, 45–47
climate considerations, 36
daylighting, 93–96
design strategies, 53–54
site selection, 28–31
size and scale, 37–39
social forces, 31–33
solar orientation, 36–37
sustainable schools, 9–10
International Code Council, 9
International Commission on Illumination, 104
International Organization for Standardization (ISO), 200
international perspective
case study, 48–51, 186–195, 210–212
future prospects, 285–288
playgrounds, 181–182
International Plumbing Code, 151
Internet, 248–249, 281–283
irrigation systems, 11, 175–177, 263
Italianate style, 55, 58
J James Ward Public School (Chicago, Illinois), 55
job-site operations, 232–235
joints, weatherizing, 119
joint-use flexibility, sustainable schools, 11
joists, wall design, 114
K KaBOOM, 182
Kahn, Louis, 83, 95
Katrina, Hurricane, 277–280
Kats, Gregory, 5, 6
Kelly, Kevin, 111
Kere, Diebedo Francis, 56
KieranTimberlake Associates, LLP, 74–76
KSS Architects, 213–215
labor unions, 223
landscaping, 163–196. See also campus concept; plantings; site planning and design; solar orientation; topography
athletic fields, 172–174
campus concept, 166–168
case study, 186–195
green roof design, 126–127
heat islands, 170–171
integrated design, 9–10
irrigation systems, 175–177
LEED, 185
lighting, 178–179
miscellaneous uses, 178–180
paving, 171–172
playgrounds, 180–184
school culture, 254
stormwater/groundwater management, 168–170
sustainable schools, 76, 79, 80, 163–165
lawns, 174. See also athletic fields
Lawrence Berkeley Laboratory (Berkeley, California), 90
Leadership in Energy and Environmental Design (LEED). See LEED (Leadership in Energy and Environmental Design)
lead paint, construction process, 236–237
learning disorders, landscaping, 164
LEED (Leadership in Energy and Environmental Design) acoustics, 66, 67, 69–70
building structure and envelope, 128, 153
campus concept, 167, 185
case study, 75–76, 79, 80–81, 132–135, 189
commissioning, 17, 239
construction process, 244
daylighting, 103
durability, 220
finishes, equipment, and furnishings, 209
future directions, 288
HVAC systems, 138, 149
job-site operations, 233
maintenance, 276
operations, 265
planning strategies, 26, 27
product information, 198, 200
roof design, 125
sustainable schools, 8–9, 21
verification, 238–239
Lerma, Rosanna, 245–246
Life Cycle Assessment (LCA) protocol, 200
life cycle costing. See also budgets; cost and bidding process; economic factors; funding
funding, 41–42
HVAC systems, 145–146, 150
mechanical systems, 68, 153–154
operations, 255–256
life cycle design, Cradle-to-Cradle approach, 197–198
light bulbs, 263, 269
light-emitting diode (LED) lamps, 102, 269
lighting requirements, daylighting, 91–92
Lighting Research Center (LRC), School of Architecture, Rensselaer Polytechnic Institute, 104
lighting systems. See also daylighting case study, 279
daylighting and, 83, 92, 102–103
developmental considerations, 73
energy efficiency, 87, 180
irrigation, 178–179
preventive maintenance, 269
resources for, 104
spatial considerations, 60
sustainable schools, 76
light pollution, 178–179, 254
light shelves, 76
linoleum floor covering, product certification, 201–202
local governments, public contracting, 221–224. See also building codes; government policy
lockers, product recommendations, 208–209
Long Beach (California) earthquake (1933), 112–113
loose-fill insulation, 118
Louv, Richard, 165
Loyola Elementary School (Los Altos, California), 159–162
lunch programs, school gardens, 184, 263
M maintenance, 267–280. See also operations athletic fields, 173–174
case study, 277–280
casework and furnishings, 207–208
costs and bidding process, 6, 221
healthy product choice, 274–275
HVAC systems, 150, 268–273
hygiene, 61
LEED, 276
overview, 267
pest control, 271–273
school culture, 250–252, 254–257
snow removal, 275
staff, 276
techiques, 273
wall finishes, 117, 202
maintenance and operations (M&O) mission, 245–246
marketing, community factors, 6
Martin Luther King Middle School (Berkeley, California), 263
masonry, wall design, 114–115
materials. See also recycling; specific materials
acoustics, 66–67
casework and furnishings, 207
cost and bidding process, 217, 224
doors, 124
durability, school operations, 254–256
job-site operations, 232–235
maintenance techniques, 273
paving, 171–172
purchasing programs, 260–263
reverberation, 64
roof design, 125
sustainable schools, 76
wall design, 116
wall finishes, 117
weatherizing, 119
windows, 120–122
material safety data sheet (MSDS), 275
Matsuzaki, Eva, 164
McDonough, William, 197
mechanical systems. See also heating, ventilating, and air-conditioning (HVAC) systems
background noise, 63
mechanical systems (cont’d)
case study, 155–162
design strategies, 53
sustainable schools, 67–68
water supply, 151–153
metal stud framing, wall design, 114–115
microbes, preventive maintenance, 269–271
microspray irrigation systems, 176
middle school, developmental considerations, 72
mind sets, community factors, 6
mixed-use spaces, acoustics, 64
modular furniture, 242–243
moisture control
building structure and envelope, 120
casework and furnishings, 207
HVAC systems, 146
preventive maintenance, 269–271
mold
preventive maintenance, 269–271
water and moisture control, 120
monitoring, operations, 259–260, 264–265
Mt. Angel High Performance Classroom
Daylight and Ventilation Diagram (Oregon), 100–101
multiple-use flexibility, sustainable schools, 11
Murray, Gordon, 210–212
music classrooms, 64, 93

O
Oberland, Cornelia Hahn, 164
obesity, 72
odor, HVAC systems, 138
office equipment, environmental impact, 208
Ohlone Elementary School (Palo Alto, California), 89
openings, 96–101, 119. See also doors; windows
open-office system, 242–243
operating costs, sustainable schools, 3–4.
See also budgets; cost and bidding process; economic factors; funding; life cycle costing
operations, 245–265. See also maintenance community connections, 264–265
democracy, 248
LEED, 265
maintenance and operations (M&O) mission, 245–246
materials, 254–257
monitoring, 259–260
postoccupancy evaluations, 257
school culture, 246–247
staff training, 257–259
supplies, 260–263
teaching strategies, 248–253
organic metaphors, design strategies, 59
OWP&P, 132–135
performance measures, daylighting, 84, 85.
See also test scores
performance spaces, acoustics, 64. See also auditorium
pest control, maintenance, 271–273. See also insects
photovoltaic panels
energy efficiency, 38, 76
roof design, 131
supplementary funding, 42–43
physical activity, developmental considerations, 71–73. See also athletic fields; playgrounds
Pine Jog Elementary School (West Palm Beach, Florida), 189–191
planning strategies, 19–52. See also community-based planning; design process and strategies; integrated design
architectural contracts, 24–26
case study, 45–51
contractor participation in, 231–232
design team selection topics, 20–24
extended services, 24
funding, 39–44
goal setting, 20–28
integrated design, 28–39
overview, 19
school boards, districts, and schools, 26–27
working groups, 27–28
workshop participants, 25–26
plantings. See also campus concept; landscaping; site planning and design
solar orientation
athletic fields, 173–174
green roof design, 126–127
integrated design, 33–36
irrigation systems, 175, 177
landscaping, 166–168
miscellaneous uses, 178–180
playgrounds, 180–184
sustainable schools, 10
playgrounds. See also athletic fields
developmental considerations, 71–73
landscaping, 180–184
playing fields. See athletic fields; playgrounds
plumbing systems
acoustics, 68
design strategies, 60, 61
fixtures, sustainable, 152–153, 263

N
National Asphalt Pavement Association (NAPA), 172
National Environmental Education and Training Foundation (NEETF), 164
natural ventilation, HVAC systems and, 143–145
nature preserve, case study, 189–191. See also campus concept; landscaping; site planning and design
neighborhoods. See also community factors
case study, 186
design strategies, 54–55, 58–59
site selection, 31
New Jersey City University Academy Charter High School (Jersey City, New Jersey), 213–215
Nightingale, Florence, 86
noise, 62–63, 68–69, 79. See also acoustics

P
paints, product information, 207
particleboard, casework and furnishings, 207
partitions, sound isolation, 65
partnering, alternative project delivery methods, 224–227
Passive solar energy, site planning, 89
pavements, campus concept, 178–179
Patkau Architects, 35, 45–47, 59, 167, 186–188
paved areas
heat islands, 170–171
landscaping, 171–172
playgrounds, 180
stormwater/groundwater management, 169–170
pedagogy, operations, 248–253
pedestrian transportation, site selection, 29–31
perception, design strategies, 53
INDEX

INDEX

321

water supply, 151–153
politics, community-based planning, sustainable schools, 7–8. See also building codes; government policy
Portland cement sidewalks, 172
postoccupancy evaluations, 240, 257
potable water. See gray water; rainwater; water supply
generaton, future prospects, 283–285
Power Purchase Agreement, 42–43
Prairie style, 58
prefabrication, costs, 240–242
private schools, 40–41, 222, 226
product information, sustainability concept, 198–200
project delivery methods, alternative, costs and bidding process, 224–227
public contracting, cost and bidding process, 221–224
public-private cooperation, case study, 77–79
public realm, design strategies, 58–59
purchasing programs, operations, 260–263

R
race, integrated design, 31
radiant HVAC systems, individual systems compared, 140–141
rain-screen systems, wall design, 114–115
rainwater, 75, 79, 129–131, 151–152, 187, 280. See also gray water; stormwater; water supply
rating systems, Cradle-to-Cradle approach, 197–198
reclaimed water. See gray water; rainwater; water supply
recycling. See also adaptive reuse; materials construction process, 236–237
deconstruction versus demolition, 242–243
landscaping, 164
resource efficiency, 14, 80
school culture, 251–252
wall finishes, 117
relative humidity, HVAC systems, 138, 146
relentless flooring, product certification, 201–202
resource efficiency, sustainable schools, 12–14
restrooms
daylighting, 96
design strategies, 60, 61
operations, 256
plumbing fixtures, 152–153
retrofitting
case study, 159–161
daylighting, 87
reuse. See adaptive reuse; recycling
reverberation, 64, 124, 203. See also acoustics
rigid-foam insulation, 119
risk management, playgrounds, 181–182
robust construction, design strategies, 61
Rockwell Group, 182
Roman style, 55
roof design, 124–127
campus concept, 33
generally, 124–125
green roof, 126–127, 132, 134
heat islands, 171
HVAC systems, 142, 271
materials, 125
mechanical systems, 68
photovoltaic power systems, 131
stormwater/groundwater management, 170
wall design, 114
roof water, sustainable schools, 11. See also gray water; rainwater; water supply
room finishes, acoustics, 67
room reverberation, acoustics, 64. See also acoustics; reverberation
rugs. See carpeting
R-value, insulation, 118–119

S
Safe Routes to School, 30, 253
safety. See also fire protection; health; toxins
cost and bidding process, 219–220
daylighting, 87
developmental considerations, 71–73
job-site operations, 235
lighting, 178–179
playgrounds, 181–182

S
Safe Routes to School, 30, 253
safety. See also fire protection; health; toxins
cost and bidding process, 219–220
daylighting, 87
developmental considerations, 71–73
job-site operations, 235
lighting, 178–179
playgrounds, 181–182
preparation, 241
wall design, 112–114
Salter, Charles M., 62–70
Salter, Ethan C., 62–70
San Francisco General Hospital, 86
Sangstha, Shidhulai Swanirvar, 283
scale and size, integrated design, 37–39
school boards, planning strategies, 26–27
school construction. See construction process
school culture, 246–254
school districts, planning strategies, 26–27
school gardens, 184, 263
Scientific Certification Systems (SCS), 199
Seabird Island School, Agassiz, British Columbia, Canada, 35, 45–47, 59
seasonal affective disorder (SAD), 84
Seattle University, 173–174, 177
security, lighting, 178–179
seismic activity
acoustic materials, 67
wall design, 112–114, 116
sewage systems, irrigation systems, 175. See also irrigation systems; waste output and waste management
shade, heat islands, 170–171
shading devices, window treatments, 122–123
sheathing, wall design, 116
sick days, sustainable schools, 4–5, 143
sidewalks, landscaping, 172
Sidi El-Aloui Primary School (Tunisia), 55, 56
siding, wall finishes, 117
Sidwell Friends School (Stewart Middle School, Washington, D. C., Bethesda, Maryland), 56, 74–76, 145, 152, 251–252
site planning and design. See also campus concept; landscaping; plantings; solar orientation; topography
acoustics, 68–69
athletic fields, 172–174
campus concept, 10, 33–35, 166–168
case study, 186–195
community organizing, 22
daylighting, 86, 87–90, 93–95
design strategies, 53, 56–57, 58–59
integrated design planning, 28–31
job-site operations, 232–235
LEED, 185
miscellaneous uses, 178–180
size and scale, integrated design, 37–39
skylights, 76. See also daylighting; lighting systems
daylighting, 84, 96–101
school operations, 250
Slater Paull Architects, 155–158
small schools, integrated design, 37–39
snow removal, maintenance, 275
social forces, 31–33, 87. See also community factors
soils, job-site operations, 235
solar chimney, 144–145, 194
solar garbage compactor, 180
Solar Heat Gain Coefficient (SHGC), 121–122, 277–278
solar orientation. See also campus concept;
landscaping; site planning and design; topography
case study, 277–278
daylighting, 86, 87–89, 93–95
design strategies, 56–57, 75, 76, 80–81
integrated design, 36–37
roof design, 125
solar panels, 7, 180, 285
solar thermal energy, HVAC systems, 149–150
Solomon, Susan, 181–182
sound isolation, 64–66, 69. See also acoustics
Spanish style, 55
spatial considerations, design strategies, 60–61
special needs schools, case study, 210–212
specifications, cost and bidding process, 217–218, 224, 228–229
spectrum, daylighting, 84
speech intelligibility, acoustics, 63
sports events. See athletic fields; playgrounds
spray foam insulation, 118–119
spray irrigation systems, 176
sprinkler irrigation systems, 176–177
SRG Partnership, 100
staff and staff offices
daylighting, 93
maintenance staff, 276
operations, 256–257
resource efficiency, sustainable schools, 13–14
training, operations, 257–259
staging areas, job-site operations, 233–235
standards. See building codes; building standards
Stewart Middle School (Sidwell Friends School, Washington, D. C., Bethesda, Maryland), 56, 74–76, 251–252
stormwater, 75, 80, 132, 168–170. See also gray water; rainwater; water supply
Strawberry Vale School (Victoria, British Columbia, Canada), 167, 186–188
structure. See building structure and envelope
stucco wall finishes, 117
student attendance, sustainable schools, 4–5, 143
studs, wall design, 114–115
sunscreens, 76, 78, 188
supplementary funding, 42–44
supplies, operations, 260–263
Sustainable Building Industry Council, 10
sustainable development concept
building structure and envelope, 111–112
climate change, 19
cost cutting, 229–230
defined, 1–2
historical timeline, 20–21
job-site operations, 232–235
need for, 2
prefabrication, 241–242
product information, 198–200
school culture, 246–254
sustainable schools, 1–18
acoustics, 16–17, 62–70
air quality, 16
benefits of, 3–6
campus concept, 10
classroom design, 14
commissioning, 17
community-based planning, 7–8
construction process, 218–219
costs and bidding process, 218–224
daylighting, 14–15
energy efficiency, 12
environmental curriculum, 10–11
flexibility, 11
food service, 263
future prospects, 281–288
integrated design, 9–10
landscaping, 163–165
LEED and CHPS, 8–9
need for, 2
resource efficiency, 12–14
sustainability concept, 1–2, 18
thermal comfort, 16
transportation, 263
water supply, 11
Sweden, 181
T
Tarkington Elementary School (Chicago, Illinois), 132–135
taxes, capital funding, 39–41
teacher performance, 5
teaching strategies, operations, 248–253
temperature, HVAC systems, 138
test scores, sustainable schools, 3. See also performance measures
thermal comfort, 16, 73
thermostats, HVAC systems, 140
third-party certification, product information, 198–200
three-dimensional models, design strategies, 53
tile floor covering, product certification, 201–202
tiles, acoustics, 67
toilet partitions, product recommendations, 209. See also restrooms
topography. See also campus concept;
landscaping; plantings; site planning and design; solar orientation
athletic fields, 173–174
design strategies, 58–59
topsoil, job-site operations, 235
toxins. See also fire protection; health;
safety
athletic fields, 173–174
ceiling finishes, 205
cleaning products, 274–275
construction process, 218, 236–237
construction process, 218, 236–237
developmental considerations, 72–73
insulation, 118–119
materials, 197
paints and coatings, 207
pest control, 271–273
wall design, 116
transportation
school culture, 253
site selection, 29–31
sustainable schools, 263
trees
heat islands, 170
job-site operations, 235
playgrounds, 180
Tunisia, 87
turbulence, forced air HVAC systems, 141–143
turf. See athletic fields; playgrounds

U
Uniform Plumbing Code, 151
United Nations Brundtland Commission Report, 1–2, 16
U. S. Department of Energy, 253
U. S. Environmental Protection Agency (USEPA), 16, 79, 201, 208, 270, 271, 273
U. S. Green Building Council (USGBC), 8, 9, 132, 151, 199
U. S. Safe Routes to School program, 30, 253
United States Supreme Court, 31
usage zoning, spatial considerations, 60–61
utility companies, supplementary funding, 42–43
U-value, windows, 121–122

V
values, school culture, 74–76, 246–247
vandalism. See also graffiti
design strategies, 61
lighting, 178–179
toilet partitions, 209
vapor barrier, 118, 120
variable refrigerant volume (VRV), 142–143
vegetable gardens, landscaping, 184, 263
Venetian blinds, 122
ventilation. See also heating, ventilating, and air-conditioning (HVAC) systems
acoustics, 68
ceiling finishes, 205
classroom design, 14–15
computers and office equipment, 208
design strategies, 56–57, 79
health concerns, 73, 86
historical perspective, 55
HVAC systems, 143–145
indoor air quality, 16
verification, construction process, 238–239
vinyl tile floor covering, 201–2, 255–256
visual expression, design strategies, 58–59
volatile organic compounds (VOCs), 76, 197, 201, 207. See also fire protection; health; safety; toxins

W
wages, costs and bidding process, 223
Waik, Virginia, 245–246
wall design, 112–117
construction methods, 114–115
finishes, 117
initial considerations, 112–114
insulation, 117–119
sheathing, 116
strategies, 116
wall finishes, 67, 202
Wal-Mart (Eco-Store, Lawrence, Kansas), 84
waste output and waste management
construction process, 218, 236–237
Cradle-to-Cradle approach, 197–198
fertilizers, 174
pest control, 272–273
school culture, 251–252
sewage systems, irrigation systems, 175
sustainability, 2, 5, 6
water closets, 152–153. See also restrooms
water control, building structure and envelope, 120
water damage, preventive maintenance, 269–271
waterproofing, 114–115, 120
Waters, Alice, 263, 264
water supply. See also gray water; rainwater
irrigation systems, 175–177
job-site operations, 234, 235
mechanical systems, 151–153
stormwater/groundwater management, 168–170
sustainable schools, 6, 11, 75, 79, 80
weather, natural ventilation, HVAC systems, 143
weatherizing, 2, 119
weather proofing, wall design, 114–115
Web sites, school operations, 248–249
Weisz + Yoes, 108–109
wetland habitat, 280
Whitman-Hanson Regional High School (Whitman, Massachusetts), 129–131
wildlife, 173–174, 183. See also insects
Williams Act (California), 248
windows
building structure and envelope, 120–122
daylighting, 68–69, 78, 86, 96–101
design strategies, 61
weatherizing, 119
window treatments, 122–123
wood, wall finishes, 117
wood floor covering, product certification, 201–202
wood products, Forest Stewardship Council (FSC), 116
wood stud framing, wall design, 114–115
Woodward Academy Middle School (College Park, Georgia), 80–81
working groups, planning strategies, 27–28
workshop participants, planning strategies, 25–26
worm’s-eye view, design strategies, 53
Wright, Frank Lloyd, 58

Z
zero net energy concept, case study, 79, 157–158
zoning, spatial considerations, 60–61
Zyscovich Architects, 189–191
Environmental Benefits Statement

This book is printed with soy-based inks on presses with VOC levels that are lower than the standard for the printing industry. The paper, Rolland Enviro 100, is manufactured by Cascades Fine Papers Group and is made from 100 percent post-consumer, de-inked fiber, without chlorine. According to the manufacturer, the use of every ton of Rolland Enviro100 Book paper, switched from virgin paper, helps the environment in the following ways:

<table>
<thead>
<tr>
<th>Mature trees</th>
<th>Waterborne waste not created</th>
<th>Water flow saved</th>
<th>Atmospheric emissions eliminated</th>
<th>Soiled Wastes reduced</th>
<th>Natural gas saved by using biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>6.9 lbs.</td>
<td>10,196 gals.</td>
<td>2,098 lbs.</td>
<td>1,081 lbs.</td>
<td>2,478 cubic feet</td>
</tr>
</tbody>
</table>