Contents

Preface xiii
Notation, terminology and some guidance for reading the book xvii

Part I BASIC CONCEPTS IN BAYESIAN METHODS

1 Modes of statistical inference 3
 1.1 The frequentist approach: A critical reflection 4
 1.1.1 The classical statistical approach 4
 1.1.2 The P-value as a measure of evidence 5
 1.1.3 The confidence interval as a measure of evidence 8
 1.1.4 An historical note on the two frequentist paradigms* 8
 1.2 Statistical inference based on the likelihood function 10
 1.2.1 The likelihood function 10
 1.2.2 The likelihood principles 11
 1.3 The Bayesian approach: Some basic ideas 14
 1.3.1 Introduction 14
 1.3.2 Bayes theorem – discrete version for simple events 15
 1.4 Outlook 18
Exercises 19

2 Bayes theorem: Computing the posterior distribution 20
 2.1 Introduction 20
 2.2 Bayes theorem – the binary version 20
 2.3 Probability in a Bayesian context 21
 2.4 Bayes theorem – the categorical version 22
 2.5 Bayes theorem – the continuous version 23
 2.6 The binomial case 24
 2.7 The Gaussian case 30
 2.8 The Poisson case 36
 2.9 The prior and posterior distribution of $h(\theta)$ 40
 2.10 Bayesian versus likelihood approach 40
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11 Bayesian versus frequentist approach</td>
<td>41</td>
</tr>
<tr>
<td>2.12 The different modes of the Bayesian approach</td>
<td>41</td>
</tr>
<tr>
<td>2.13 An historical note on the Bayesian approach</td>
<td>42</td>
</tr>
<tr>
<td>2.14 Closing remarks</td>
<td>44</td>
</tr>
<tr>
<td>Exercises</td>
<td>44</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>3.2 Summarizing the posterior by probabilities</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Posterior summary measures</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1 Characterizing the location and variability of the posterior distribution</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2 Posterior interval estimation</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Predictive distributions</td>
<td>51</td>
</tr>
<tr>
<td>3.4.1 The frequentist approach to prediction</td>
<td>52</td>
</tr>
<tr>
<td>3.4.2 The Bayesian approach to prediction</td>
<td>53</td>
</tr>
<tr>
<td>3.4.3 Applications</td>
<td>54</td>
</tr>
<tr>
<td>3.5 Exchangeability</td>
<td>58</td>
</tr>
<tr>
<td>3.6 A normal approximation to the posterior</td>
<td>60</td>
</tr>
<tr>
<td>3.6.1 A Bayesian analysis based on a normal approximation to the likelihood</td>
<td>60</td>
</tr>
<tr>
<td>3.6.2 Asymptotic properties of the posterior distribution</td>
<td>62</td>
</tr>
<tr>
<td>3.7 Numerical techniques to determine the posterior</td>
<td>63</td>
</tr>
<tr>
<td>3.7.1 Numerical integration</td>
<td>63</td>
</tr>
<tr>
<td>3.7.2 Sampling from the posterior</td>
<td>65</td>
</tr>
<tr>
<td>3.7.3 Choice of posterior summary measures</td>
<td>72</td>
</tr>
<tr>
<td>3.8 Bayesian hypothesis testing</td>
<td>72</td>
</tr>
<tr>
<td>3.8.1 Inference based on credible intervals</td>
<td>72</td>
</tr>
<tr>
<td>3.8.2 The Bayes factor</td>
<td>74</td>
</tr>
<tr>
<td>3.8.3 Bayesian versus frequentist hypothesis testing</td>
<td>76</td>
</tr>
<tr>
<td>3.9 Closing remarks</td>
<td>78</td>
</tr>
<tr>
<td>Exercises</td>
<td>79</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Joint versus marginal posterior inference</td>
<td>83</td>
</tr>
<tr>
<td>4.3 The normal distribution with μ and σ^2 unknown</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1 No prior knowledge on μ and σ^2 is available</td>
<td>84</td>
</tr>
<tr>
<td>4.3.2 An historical study is available</td>
<td>86</td>
</tr>
<tr>
<td>4.3.3 Expert knowledge is available</td>
<td>88</td>
</tr>
<tr>
<td>4.4 Multivariate distributions</td>
<td>89</td>
</tr>
<tr>
<td>4.4.1 The multivariate normal and related distributions</td>
<td>89</td>
</tr>
<tr>
<td>4.4.2 The multinomial distribution</td>
<td>90</td>
</tr>
<tr>
<td>4.5 Frequentist properties of Bayesian inference</td>
<td>92</td>
</tr>
<tr>
<td>4.6 Sampling from the posterior distribution: The Method of Composition</td>
<td>93</td>
</tr>
<tr>
<td>4.7 Bayesian linear regression models</td>
<td>96</td>
</tr>
<tr>
<td>4.7.1 The frequentist approach to linear regression</td>
<td>96</td>
</tr>
<tr>
<td>4.7.2 A noninformative Bayesian linear regression model</td>
<td>97</td>
</tr>
</tbody>
</table>
CONTENTS

4.7.3 Posterior summary measures for the linear regression model 98
4.7.4 Sampling from the posterior distribution 99
4.7.5 An informative Bayesian linear regression model 101
4.8 Bayesian generalized linear models 101
4.9 More complex regression models 102
4.10 Closing remarks 102
Exercises 102

5 Choosing the prior distribution 104
5.1 Introduction 104
5.2 The sequential use of Bayes theorem 104
5.3 Conjugate prior distributions 106
5.3.1 Univariate data distributions 106
5.3.2 Normal distribution – mean and variance unknown 109
5.3.3 Multivariate data distributions 110
5.3.4 Conditional conjugate and semiconjugate distributions 111
5.3.5 Hyperpriors 112
5.4 Noninformative prior distributions 113
5.4.1 Introduction 113
5.4.2 Expressing ignorance 114
5.4.3 General principles to choose noninformative priors 115
5.4.4 Improper prior distributions 119
5.4.5 Weak/vague priors 120
5.5 Informative prior distributions 121
5.5.1 Introduction 121
5.5.2 Data-based prior distributions 121
5.5.3 Elicitation of prior knowledge 122
5.5.4 Archetypal prior distributions 126
5.6 Prior distributions for regression models 129
5.6.1 Normal linear regression 129
5.6.2 Generalized linear models 131
5.6.3 Specification of priors in Bayesian software 134
5.7 Modeling priors 134
5.8 Other regression models 136
5.9 Closing remarks 136
Exercises 137

6 Markov chain Monte Carlo sampling 139
6.1 Introduction 139
6.2 The Gibbs sampler 140
6.2.1 The bivariate Gibbs sampler 140
6.2.2 The general Gibbs sampler 146
6.2.3 Remarks* 150
6.2.4 Review of Gibbs sampling approaches 152
6.2.5 The Slice sampler* 153
6.3 The Metropolis(–Hastings) algorithm 154
6.3.1 The Metropolis algorithm 155
6.3.2 The Metropolis–Hastings algorithm 157
CONTENTS

6.3.3 Remarks* 159
6.3.4 Review of Metropolis–Hastings approaches 161

6.4 Justification of the MCMC approaches*

6.4.1 Properties of the MH algorithm 164
6.4.2 Properties of the Gibbs sampler 165

6.5 Choice of the sampler 165
6.6 The Reversible Jump MCMC algorithm* 168

6.7 Closing remarks 172
Exercises 173

7 Assessing and improving convergence of the Markov chain 175

7.1 Introduction 175
7.2 Assessing convergence of a Markov chain 176
7.2.1 Definition of convergence for a Markov chain 176
7.2.2 Checking convergence of the Markov chain 176
7.2.3 Graphical approaches to assess convergence 177
7.2.4 Formal diagnostic tests 180
7.2.5 Computing the Monte Carlo standard error 186
7.2.6 Practical experience with the formal diagnostic procedures 188

7.3 Accelerating convergence 189
7.3.1 Introduction 189
7.3.2 Acceleration techniques 189

7.4 Practical guidelines for assessing and accelerating convergence 194
7.5 Data augmentation 195
7.6 Closing remarks 200
Exercises 201

8 Software 202

8.1 WinBUGS and related software 202
8.1.1 A first analysis 203
8.1.2 Information on samplers 206
8.1.3 Assessing and accelerating convergence 207
8.1.4 Vector and matrix manipulations 208
8.1.5 Working in batch mode 210
8.1.6 Troubleshooting 212
8.1.7 Directed acyclic graphs 212
8.1.8 Add-on modules: GeoBUGS and PKBUGS 214
8.1.9 Related software 214

8.2 Bayesian analysis using SAS 215
8.2.1 Analysis using procedure GENMOD 215
8.2.2 Analysis using procedure MCMC 217
8.2.3 Other Bayesian programs 220

8.3 Additional Bayesian software and comparisons 221
8.3.1 Additional Bayesian software 221
8.3.2 Comparison of Bayesian software 222

8.4 Closing remarks 222
Exercises 223
Part II BAYESIAN TOOLS FOR STATISTICAL MODELING

9 Hierarchical models 227
9.1 Introduction 227
9.2 The Poisson-gamma hierarchical model 228
9.2.1 Introduction 228
9.2.2 Model specification 229
9.2.3 Posterior distributions 231
9.2.4 Estimating the parameters 232
9.2.5 Posterior predictive distributions 237
9.3 Full versus empirical Bayesian approach 238
9.4 Gaussian hierarchical models 240
9.4.1 Introduction 240
9.4.2 The Gaussian hierarchical model 240
9.4.3 Estimating the parameters 241
9.4.4 Posterior predictive distributions 243
9.4.5 Comparison of FB and EB approach 244
9.5 Mixed models 244
9.5.1 Introduction 244
9.5.2 The linear mixed model 244
9.5.3 The generalized linear mixed model 248
9.5.4 Nonlinear mixed models 253
9.5.5 Some further extensions 256
9.5.6 Estimation of the random effects and posterior predictive distributions 256
9.5.7 Choice of the level-2 variance prior 258
9.6 Propriety of the posterior 260
9.7 Assessing and accelerating convergence 261
9.8 Comparison of Bayesian and frequentist hierarchical models 263
9.8.1 Estimating the level-2 variance 263
9.8.2 ML and REML estimates compared with Bayesian estimates 264
9.9 Closing remarks 265
Exercises 265

10 Model building and assessment 267
10.1 Introduction 267
10.2 Measures for model selection 268
10.2.1 The Bayes factor 268
10.2.2 Information theoretic measures for model selection 274
10.2.3 Model selection based on predictive loss functions 286
10.3 Model checking 288
10.3.1 Introduction 288
10.3.2 Model-checking procedures 289
10.3.3 Sensitivity analysis 295
10.3.4 Posterior predictive checks 300
10.3.5 Model expansion 308
10.4 Closing remarks 316
Exercises 316
CONTENTS

11 Variable selection

11.1 Introduction

11.2 Classical variable selection

11.2.1 Variable selection techniques

11.2.2 Frequentist regularization

11.3 Bayesian variable selection: Concepts and questions

11.4 Introduction to Bayesian variable selection

11.4.1 Variable selection for K small

11.4.2 Variable selection for K large

11.5 Variable selection based on Zellner’s g-prior

11.6 Variable selection based on Reversible Jump Markov chain Monte Carlo

11.7 Spike and slab priors

11.7.1 Stochastic Search Variable Selection

11.7.2 Gibbs Variable Selection

11.7.3 Dependent variable selection using SSVS

11.8 Bayesian regularization

11.8.1 Bayesian LASSO regression

11.8.2 Elastic Net and further extensions of the Bayesian LASSO

11.9 The many regressors case

11.10 Bayesian model selection

11.11 Bayesian model averaging

11.12 Closing remarks

Exercises

Part III BAYESIAN METHODS IN PRACTICAL APPLICATIONS

12 Bioassay

12.1 Bioassay essentials

12.1.1 Cell assays

12.1.2 Animal assays

12.2 A generic *in vitro* example

12.3 Ames/Salmonella mutagenic assay

12.4 Mouse lymphoma assay (L5178Y TK+/-)

12.5 Closing remarks

13 Measurement error

13.1 Continuous measurement error

13.1.1 Measurement error in a variable

13.1.2 Two types of measurement error on the predictor in linear and nonlinear models

13.1.3 Accommodation of predictor measurement error

13.1.4 Nonadditive errors and other extensions

13.2 Discrete measurement error

13.2.1 Sources of misclassification

13.2.2 Misclassification in the binary predictor

13.2.3 Misclassification in a binary response

13.3 Closing remarks
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Survival analysis</td>
<td>390</td>
</tr>
<tr>
<td>14.1</td>
<td>Basic terminology</td>
<td>390</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Endpoint distributions</td>
<td>391</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Censoring</td>
<td>392</td>
</tr>
<tr>
<td>14.1.3</td>
<td>Random effect specification</td>
<td>393</td>
</tr>
<tr>
<td>14.1.4</td>
<td>A general hazard model</td>
<td>393</td>
</tr>
<tr>
<td>14.1.5</td>
<td>Proportional hazards</td>
<td>394</td>
</tr>
<tr>
<td>14.1.6</td>
<td>The Cox model with random effects</td>
<td>394</td>
</tr>
<tr>
<td>14.2</td>
<td>The Bayesian model formulation</td>
<td>394</td>
</tr>
<tr>
<td>14.2.1</td>
<td>A Weibull survival model</td>
<td>395</td>
</tr>
<tr>
<td>14.2.2</td>
<td>A Bayesian AFT model</td>
<td>397</td>
</tr>
<tr>
<td>14.3</td>
<td>Examples</td>
<td>397</td>
</tr>
<tr>
<td>14.3.1</td>
<td>The gastric cancer study</td>
<td>397</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Prostate cancer in Louisiana: A spatial AFT model</td>
<td>401</td>
</tr>
<tr>
<td>14.4</td>
<td>Closing remarks</td>
<td>406</td>
</tr>
<tr>
<td>15</td>
<td>Longitudinal analysis</td>
<td>407</td>
</tr>
<tr>
<td>15.1</td>
<td>Fixed time periods</td>
<td>407</td>
</tr>
<tr>
<td>15.1.1</td>
<td>Introduction</td>
<td>407</td>
</tr>
<tr>
<td>15.1.2</td>
<td>A classical growth-curve example</td>
<td>408</td>
</tr>
<tr>
<td>15.1.3</td>
<td>Alternate data models</td>
<td>414</td>
</tr>
<tr>
<td>15.2</td>
<td>Random event times</td>
<td>417</td>
</tr>
<tr>
<td>15.3</td>
<td>Dealing with missing data</td>
<td>420</td>
</tr>
<tr>
<td>15.3.1</td>
<td>Introduction</td>
<td>420</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Response missingness</td>
<td>421</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Missingness mechanisms</td>
<td>422</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Bayesian considerations</td>
<td>424</td>
</tr>
<tr>
<td>15.3.5</td>
<td>Predictor missingness</td>
<td>424</td>
</tr>
<tr>
<td>15.4</td>
<td>Joint modeling of longitudinal and survival responses</td>
<td>424</td>
</tr>
<tr>
<td>15.4.1</td>
<td>Introduction</td>
<td>424</td>
</tr>
<tr>
<td>15.4.2</td>
<td>An example</td>
<td>425</td>
</tr>
<tr>
<td>15.5</td>
<td>Closing remarks</td>
<td>429</td>
</tr>
<tr>
<td>16</td>
<td>Spatial applications: Disease mapping and image analysis</td>
<td>430</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>430</td>
</tr>
<tr>
<td>16.2</td>
<td>Disease mapping</td>
<td>430</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Some general spatial epidemiological issues</td>
<td>431</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Some spatial statistical issues</td>
<td>433</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Count data models</td>
<td>433</td>
</tr>
<tr>
<td>16.2.4</td>
<td>A special application area: Disease mapping/risk estimation</td>
<td>434</td>
</tr>
<tr>
<td>16.2.5</td>
<td>A special application area: Disease clustering</td>
<td>438</td>
</tr>
<tr>
<td>16.2.6</td>
<td>A special application area: Ecological analysis</td>
<td>443</td>
</tr>
<tr>
<td>16.3</td>
<td>Image analysis</td>
<td>444</td>
</tr>
<tr>
<td>16.3.1</td>
<td>fMRI modeling</td>
<td>446</td>
</tr>
<tr>
<td>16.3.2</td>
<td>A note on software</td>
<td>455</td>
</tr>
<tr>
<td>17</td>
<td>Final chapter</td>
<td>456</td>
</tr>
<tr>
<td>17.1</td>
<td>What this book covered</td>
<td>456</td>
</tr>
</tbody>
</table>
CONTENTS

17.2 Additional Bayesian developments 456
 17.2.1 Medical decision making 456
 17.2.2 Clinical trials 457
 17.2.3 Bayesian networks 457
 17.2.4 Bioinformatics 458
 17.2.5 Missing data 458
 17.2.6 Mixture models 458
 17.2.7 Nonparametric Bayesian methods 459
17.3 Alternative reading 459

Appendix: Distributions 460

A.1 Introduction 460
A.2 Continuous univariate distributions 461
A.3 Discrete univariate distributions 477
A.4 Multivariate distributions 481

References 484

Index 509