Contents

Preface xvii

Part I Visible-Light Active Photocatalysis – Research and Technological Advancements 1

1 Research Frontiers in Solar Light Harvesting 3
Srabanti Ghosh
1.1 Introduction 3
1.2 Visible-Light-Driven Photocatalysis for Environmental Protection 4
1.3 Photocatalysis for Water Splitting 8
1.4 Photocatalysis for Organic Transformations 11
1.5 Mechanistic Studies of Visible-Light-Active Photocatalysis 13
1.6 Summary 14
References 15

2 Recent Advances on Photocatalysis for Water Detoxification and CO₂ Reduction 27
Carlotta Raviola and Stefano Protti
2.1 Introduction 27
2.2 Photocatalysts for Environmental Remediation and CO₂ Reduction 30
2.2.1 Undoped TiO₂ 30
2.2.2 Undoped Metal Oxides Different from TiO₂ 32
2.2.3 Carbon Modified Metal Oxides as Photocatalysts 33
2.2.4 Doped Metal Oxides 34
2.2.5 Perovskites 35
2.2.6 Metal Chalcogenides 36
2.2.7 Other Catalysts 37
2.3 Photoreactors for Solar Degradation of Organic Pollutants and CO₂ Reduction 38
2.3.1 Non Concentrating (Low Concentration or Low Temperature) Systems 39
2.3.2 Medium Concentrating or Medium Temperature Systems 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>High Concentrating or High-Temperature Systems</td>
<td>42</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Parameters of a Solar Reactor</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusion</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Fundamentals of Photocatalytic Water Splitting (Hydrogen and Oxygen Evolution)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Sanjib Shyamal, Paramita Hajra, Harahari Mandal, Aparajita Bera, Debasis Sariket, and Chinmoy Bhattacharya</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Strategy for Development of Photocatalyst Systems for Water Splitting</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Electrochemistry of Semiconductors at the Electrolyte Interface</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Effect of Light at the Semiconductor–Electrolyte Interface</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Conversion and Storage of Sunlight</td>
<td>62</td>
</tr>
<tr>
<td>3.6</td>
<td>Electrolysis and Photoelectrolysis</td>
<td>63</td>
</tr>
<tr>
<td>3.7</td>
<td>Development of Photocatalysts for Solar-Driven Water Splitting</td>
<td>65</td>
</tr>
<tr>
<td>3.8</td>
<td>Approaches to Develop Visible-Light-Absorbing Metal Oxides</td>
<td>66</td>
</tr>
<tr>
<td>3.9</td>
<td>Conclusions</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Photoredox Catalytic Activation of Carbon—Halogen Bonds: C—H Functionalization Reactions under Visible Light</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Javier I. Bardagi and Indrajit Ghosh</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Activation of Alkyl Halides</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Activation of Aryl Halides</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Factors That Determine the Carbon–Halogen Bond Activation of Aryl Halides</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Factors That Determine the Yields of the C—H Arylated Products</td>
<td>109</td>
</tr>
<tr>
<td>4.6</td>
<td>Achievements and Challenges Ahead</td>
<td>109</td>
</tr>
<tr>
<td>4.7</td>
<td>Conclusion</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Part II Design and Developments of Visible Light Active Photocatalysis</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>Black TiO₂: The New-Generation Photocatalyst</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Sanjay Gopal Ullattil, Soumya B. Narendranath, and Pradeepan Periyat</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Designing Black TiO₂ Nanostructures</td>
<td>118</td>
</tr>
<tr>
<td>5.3</td>
<td>Black TiO₂ as Photocatalyst</td>
<td>122</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>123</td>
</tr>
</tbody>
</table>
6 Effect of Modification of TiO$_2$ with Metal Nanoparticles on Its Photocatalytic Properties Studied by Time-Resolved Microwave Conductivity 129
Hynd Remita, Maria Guadalupe Méndez Medrano, and Christophe Colbeau-Justin

6.1 Introduction 129
6.2 Deposition of Metal Nanoparticles by Radiolysis and by Photodeposition Method 130
6.3 Electronic Properties Studied Time-Resolved Microwave Conductivity 132
6.3.1 Surface Modification of Titania with Monometallic Nanoparticles 133
6.3.1.1 Surface Modification of Titania with Pt Clusters 133
6.3.1.2 Surface Modification of TiO$_2$ with Pd Nanoparticles 135
6.3.1.3 Modification of TiO$_2$ with Ag Nanoparticles 136
6.4 Modification of TiO$_2$ with Au Nanoparticles 138
6.5 Modification of TiO$_2$ with Bi Clusters 144
6.6 Surface Modification of TiO$_2$ with Bimetallic Nanoparticles 146
6.6.1 Surface Modification with Au–Cu Nanoparticles 146
6.6.2 Surface Modification with Ag and CuO Nanoparticles 148
6.6.3 Comodification of TiO$_2$ with Ni and Au Nanoparticles for Hydrogen Production 150
6.6.4 TiO$_2$ Modified with NiPd Nanoalloys for Hydrogen Evolution 153
6.7 The Effect of Metal Cluster Deposition Route on Structure and Photocatalytic Activity of Mono- and Bimetallic Nanoparticles Supported on TiO$_2$ 155
6.8 Summary 156
References 157

7 Glassy Photocatalysts: New Trend in Solar Photocatalysis 165
Bharat B. Kale, Manjiri A. Mahadadalkar, and Ashwini P. Bhirud

7.1 Introduction 165
7.2 Fundamentals of H$_2$S Splitting 166
7.2.1 General 166
7.2.2 Thermodynamics of H$_2$S Splitting 166
7.2.3 Role of Photocatalysts 167
7.3 Designing the Assembly for H$_2$S Splitting 168
7.3.1 Standardization of H$_2$S Splitting Setup 168
7.3.2 Interaction of Photocatalyst and Reagent System 169
7.4 Chalcogenide Photocatalysts 170
7.5 Limitations of Powder Photocatalysts 170
7.6 Glassy Photocatalyst: Innovative Approach 171
7.6.1 Semiconductor–Glass Nanocomposites and Their Advantages 171
7.7 General Methods for Glasses Preparation 172
7.7.1 Glass by Melt-Quench Technique 172
7.8 Color of the Glass – Bandgap Engineering by Growth of Semiconductors in Glass 174
8 Recent Developments in Heterostructure-Based Catalysts for Water Splitting 191
J. A. Savio Moniz
8.1 Introduction 191
8.1.1 Band Alignment 193
8.2 Visible-Light-Responsive Junctions 195
8.2.1 BiVO$_4$-Based Junctions 195
8.2.1.1 BiVO$_4$/WO$_3$ 197
8.2.1.2 BiVO$_4$/ZnO 197
8.2.1.3 BiVO$_4$/TiO$_2$ 199
8.2.1.4 BiVO$_4$/Carbon-Based Materials 199
8.2.2 Fe$_2$O$_3$-Based Junctions 199
8.2.3 WO$_3$-Based Junctions 201
8.2.4 C$_3$N$_4$-Based Junctions 202
8.2.5 Cu$_2$O-Based Junctions 204
8.3 Visible-Light-Driven Photocatalyst/OEC Junctions 207
8.3.1 BiVO$_4$/OEC 207
8.3.2 Fe$_2$O$_3$/OEC 207
8.3.3 WO$_3$/OEC 208
8.4 Observation of Charge Carrier Kinetics in Heterojunction Structure 209
8.4.1 Transient Absorption Spectroscopy 209
8.4.2 Electrochemical Impedance Spectroscopy 211
8.4.3 Surface Photovoltage Spectroscopy 213
8.5 Conclusions 215
References 216

9 Conducting Polymers Nanostructures for Solar-Light Harvesting 227
Srabanti Ghosh, Hynd Remita, and Rajendra N. Basu
9.1 Introduction 227
9.2 Conducting Polymers as Organic Semiconductor 228
9.3 Conducting Polymer-Based Nanostructured Materials 231
9.4 Synthesis of Conducting Polymer Nanostructures 231
9.4.1 Hard Templates 232
9.4.2 Soft Templates 232
9.4.3 Template Free 233
9.5 Applications of Conducting Polymer 233
9.5.1 Conducting Polymer Nanostructures for Organic Pollutant Degradation 233
9.5.2 Conducting Polymer Nanostructures for Photocatalytic Water Splitting 237
9.5.3 Conducting Polymer-Based Heterostructures 242
9.6 Conclusion 245
References 246

Part III Visible Light Active Photocatalysis for Solar Energy Conversion and Environmental Protection 253

10 Sensitization of TiO$_2$ by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO$_2$ to the Visible Region 255
Marta I. Litter, Enrique San Román, the late María A. Grela, Jorge M. Meichtry, and Hernán B. Rodríguez
10.1 Introduction 255
10.2 Mechanisms Involved in the Use of Dye-Modified TiO$_2$ Materials for Transformation of Pollutants and Hydrogen Production under Visible Irradiation 256
10.3 Use of Dye-Modified TiO$_2$ Materials for Energy Conversion in Dye-Sensitized Solar Cells 260
10.4 Self-Sensitized Degradation of Dye Pollutants 262
10.5 Use of Dye-Modified TiO$_2$ for Visible-Light-Assisted Degradation of Colorless Pollutants 265
10.6 Water Splitting and Hydrogen Production using Dye-Modified TiO$_2$ Photocatalysts under Visible Light 269
10.7 Conclusions 270
Acknowledgement 271
References 271

11 Advances in the Development of Novel Photocatalysts for Detoxification 283
Ciara Byrne, Michael Nolan, Swagata Banerjee, Honey John, Sheethu Jose, Pradeepan Periyat, and Suresh C. Pillai
11.1 Introduction 283
11.2 Theoretical Studies of Photocatalysis 285
11.2.1 Doping and Surface Modification of TiO$_2$ for Bandgap Engineering 285
11.2.2 Alignment of Valence and Conduction Band Edges with Water Oxidation and Reduction Potentials 291
11.2.3 Electron and Hole Localization 293
11.3 Metal-Doped Photocatalysts for Detoxification 296
11.3.1 High-Temperature Stable Anatase TiO$_2$ Photocatalyst 296
11.3.2 Main Group Metal Ions on Anatase Stability and Photocatalytic Activity 296
11.3.3 Effect of Transition Metals on Anatase Stability and Photocatalytic Activity 296
11.3.4 Effect of Rare Earth Metal Ions on Anatase Stability and Photocatalytic Activity 297
11.4 Graphene-TiO$_2$ Composites for Detoxification 299
11.5 Commercial Applications of Photocatalysis in Environmental Detoxification 303
11.5.1 Self-Cleaning Materials 303
11.5.2 Bactericidal 307
11.5.3 Wastewater Detoxification 308
11.6 Conclusions 313
References 313

12 Metal-Free Organic Semiconductors for Visible-Light-Active Photocatalytic Water Splitting 329
S. T. Nishanthi, Battula Venugopala Rao, and Kamalakannan Kailasam
12.1 Introduction 329
12.2 Organic Semiconductors for Photocatalytic Water Splitting and Emergence of Graphitic Carbon Nitrides 331
12.3 Graphitic Carbon Nitrides for Photocatalytic Water Splitting 332
12.3.1 Precursor-Derived g-CN 334
12.3.2 Nanoporous g-CN by Templating Methods 336
12.3.2.1 Hard Templating 337
12.3.2.2 Soft Templating 339
12.3.2.3 Template-Free 340
12.3.3 Heteroatom Doping 341
12.3.3.1 Metal Doping 341
12.3.3.2 Nonmetal Doping 342
12.3.4 Metal Oxides/g-CN Nanocomposites 344
12.3.5 Graphene and CNT-Based g-CN Nanocomposites 345
12.3.6 Structural Modification with Organic Groups 345
12.3.7 Crystalline Carbon Nitrides 347
12.3.8 Overall Water Splitting and Large-Scale Hydrogen Production Using Carbon Nitrides 348
12.4 Novel Materials 349
12.4.1 Triazine and Heptazine-Based Organic Polymers 349
12.4.2 Covalent Organic Frameworks (COFs) and Beyond 350
12.5 Conclusions and Perspectives 351
References 352

13 Solar Photochemical Splitting of Water 365
Srinivasa Rao Lingampalli and C. N. R. Rao
13.1 Introduction 365
13.2 Photocatalytic Water Splitting 366
13.2.1 Fundamentals of Water Splitting 366
13.2.2 Light-Harvesting Units 367
13.2.3 Photocatalytic Activity 369
13.2.4 Effect of Size of Nanostructures 369
13.3 Overall Water Splitting 371
13.3.1 One-Step Photocatalytic Process 371
13.3.2 Two-Step (Z-Scheme) Photocatalytic Process 374
13.4 Oxidation of Water 376
13.5 Reduction of Water 380
13.5.1 C$_3$N$_4$ and Related Materials 380
13.5.2 Semiconductors 382
13.5.3 Multicomponent Heterostructures 383
13.6 Coupled Reactions 386
13.7 Summary and Outlook 387
Acknowledgments 387
References 387

14 Recent Developments on Visible-Light Photoredox Catalysis by Organic Dyes for Organic Synthesis 393
Shounak Ray, Partha Kumar Samanta, and Papu Biswas
14.1 Introduction 393
14.2 General Mechanism 393
14.3 Recent Application of Organic Dyes as Visible-Light Photoredox Catalysts 396
14.3.1 Photocatalysis by Eosin Y 396
14.3.1.1 Perfluroarylation of Arenes 396
14.3.1.2 Synthesis of Benzo[b]phosphole Oxides 397
14.3.1.3 Direct C—H Arylation of Heteroarenes 398
14.3.1.4 Synthesis of 1,2-Diketones from Alkynes 399
14.3.1.5 Thiocyanation of Imidazoheterocycles 401
14.3.2 Photocatalysis by Rose Bengal 402
14.3.2.1 Aerobic Indole C-3 Formylation Reaction 402
14.3.2.2 Decarboxylative/Decarbonylative C3-Acylation of Indoles 404
14.3.2.3 Oxidative Annulation of Arylamidines 405
14.3.2.4 Cross-Dehydrogenative Coupling of Tertiary Amines with Diazo Compounds 406
14.3.2.5 C—H Functionalization and Cross-Dehydrogenative Coupling Reactions 407
14.3.2.6 Oxidative Cross-Coupling of Thiols with P(O)H Compounds 408
14.3.3 Photocatalysis by Methylene Blue 409
14.3.3.1 Oxidative Hydroxylation of Arylboronic Acids 409
14.3.3.2 Radical Trifluoromethylation 410
14.3.4 Photocatalysis by 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine 411
14.3.4.1 Synthesis of 2-Substituted Benzimidazole and Benzothiazole 411
14.3.4.2 Oxidation of Alcohols to Carbonyl Derivatives 413
14.3.5 Photocatalysis by Phenothiazine Dyes: Oxidative Coupling of Primary Amines 414
14.4 Conclusion 415
Abbreviations 415
References 415
15 Visible-Light Heterogeneous Catalysts for Photocatalytic CO₂ Reduction

Sanyasinaidu Boddu, S.T. Nishanthi, and Kamalakannan Kailasam

15.1 Introduction 421
15.2 Basic Principles of Photocatalytic CO₂ Reduction 422
15.2.1 Thermodynamic Favorability of the Reactions 423
15.3 Inorganic Semiconductors 424
15.3.1 Metal Oxides 424
15.3.2 Sulfides 428
15.3.3 Oxynitrides 429
15.4 Organic Semiconductors 430
15.4.1 Carbon Nitride and their Composites 430
15.4.2 Metal Organic Frameworks (MOFs) 434
15.4.3 Covalent Organic Frameworks 435
15.5 Semiconductor Heterojunctions 436
15.6 Conclusion and Perspectives 437

References 438

Part IV Mechanistic Studies of Visible Light Active Photocatalysis 447

16 Band-gap Engineering of Photocatalysts: Surface Modification versus Doping 449

Ewa Kowalska, Zhishun Wei, and Marcin Janczarek

16.1 Introduction 449
16.2 Doping 451
16.2.1 Metal Ion Doping 451
16.2.2 Nonmetal Ion Doping 453
16.2.3 Codoping 455
16.2.4 Self-Doping 457
16.3 Surface Modification 458
16.3.1 Metals 458
16.3.2 Nonmetals 464
16.3.3 Organic Compounds (Colorless and Color) 464
16.4 Heterojunctions 468
16.4.1 Excitation of One Component 468
16.4.2 Excitation of Both Components 469
16.5 Z-Scheme 470
16.6 Hybrid Nanostructures 471
16.7 Summary 473

References 473
17 Roles of the Active Species Generated during Photocatalysis 485
Mats Jonsson
17.1 Introduction 485
17.2 Mechanism of Photocatalysis in TiO₂/Water Systems 486
17.3 Active Species Generated at the Catalyst/Water Interface 486
17.4 Oxidative Degradation of Solutes Present in the Aqueous Phase 490
17.5 Impact of H₂O₂ on Oxidative Degradation of Solutes Present in the Aqueous Phase 492
17.6 The Role of Common Anions Present in the Aqueous Phase 493
17.7 Summary of Active Species Present in Heterogeneous Photocatalysis in Water 494
References 495

18 Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications 499
Ramachandran Vasant Kumar and Michael Coto
18.1 Introduction 499
18.2 Historical Background 499
18.3 Basic Concepts 501
18.4 Structure of TiO₂ 504
18.5 Photocatalytic Reactions 506
18.6 Physical Architectures of TiO₂ 507
18.7 Visible-Light Photocatalysis 509
18.8 Ion Doping and Ion Implantation 510
18.9 Dye Sensitization 513
18.10 Noble Metal Loading 514
18.11 Coupled Semiconductors 518
18.12 Carbon–TiO₂ Composites 518
18.13 Alternatives to TiO₂ 520
18.14 Conclusions 521
References 522

Part V Challenges and Perspectives of Visible Light Active Photocatalysis for Large Scale Applications 527

19 Quantum Dynamics Effects in Photocatalysis 529
Abdulrahiman Nijamudheen and Alexey V. Akimov
19.1 Introduction 529
19.2 Computational Approaches to Model Adiabatic Processes in Photocatalysis 531
19.3 Computational Approaches to Model Nonadiabatic Effects in Photocatalysis 532
19.4 Quantum Tunneling in Adiabatic and Nonadiabatic Dynamics 535
19.5 The Mechanisms of Organic Reactions Catalyzed by Semiconductor Photocatalysts 541
19.5.1 Methanol Photooxidation on Semiconductor Surfaces 541
19.5.2 Water-Splitting Reactions on Semiconductor Surfaces 544
19.5.3 Carbon Oxide Redox Reactions on Semiconductor Surfaces 546
19.6 Conclusions and Outlook 547
References 549

Justin D. Glover, Adam C. Hartley, Reid A. Windmiller, Naoma S. Nelsen, and Joel E. Boyd
20.1 Introduction 567
20.2 Materials 568
20.3 Slurry-Style Photocatalysis 569
20.4 Deposited Photocatalysts 569
20.5 Applications 570
20.5.1 Gas Phase and Self-Cleaning Applications 570
20.5.2 Water Purification Applications 571
20.5.3 Inclined Plate Collectors 571
20.5.4 Parabolic Trough Concentrator 572
20.5.5 Compound Parabolic Concentrator Reactor 573
20.5.6 The Environmental Impact of Nanoscale Titania 574
20.5.7 Detecting and Quantifying Nanoparticles 574
20.5.8 Transformation of Nanoparticles in the Environment 575
20.5.9 Toxicity of Nanoparticles 576
20.6 Conclusion 577
References 577

21 Conclusions and Future Work 585
Srabanti Ghosh

Index 589