1

Research Frontiers in Solar Light Harvesting

Srabanti Ghosh

CSIR – Central Glass and Ceramic Research Institute, Fuel Cell and Battery Division, 196, Raja S.C. Mullick Road, Kolkata 700032, India

1.1 Introduction

In continuously growing technology-driven society, an urgent need for efficient solar light harvesting to achieve sustainable solutions in science and industry exists [1, 2]. The rapid growth of industries and some unavoidable human activities cause environment pollution to be a threat to the society. Solar-energy-mediated advanced oxidation process in water purification is a highly desirable approach [3]. To use the solar light, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. Over the last few decades, a significant effort has been made to develop active materials including inorganic, organic, ceramic, polymeric, and carbonaceous, their composites with tunable size and structures [4–6]. A broad range of materials including metal oxides, chalcogenides, carbides, nitrides, and phosphides of various compositions such as heterogeneous, plasmonic, conjugated polymers, porous carbon-based materials, and graphene-based materials has been explored to address/solve energy and environment-related research challenges [7–10]. In this context, oxide-based semiconductors, in particular, TiO$_2$, have been recognized as efficient and widely explored photocatalysts. Semiconductor-oxide-based catalysts is essentially limited by low quantum yield which results from the fast charge carrier (e$^{-}$/h$^+$) recombination, and the necessity to use UV irradiation (5% of total sun energy) having wide bandgap [11, 12]. To overcome these limitations, surface-tuning strategies and modification of oxides on the nanometer scale have been developed via doping or surface modifications to produce visible-light-responsive photocatalysts. Indeed, TiO$_2$ doped with N, C, or S or its modification with metal nanoparticles (Ag, Au, Pt, Cu, Bi) has extended its activity toward the visible region [13–16]. However, the photocatalytic activity of the modified materials in the visible light is still not sufficient for commercial applications. Research efforts are therefore increasingly being carried out to design and develop more efficient novel visible-light active catalysts for photocatalysis and solar energy conversion. A considerable number of novel synthetic strategies including
fabrication of plasmonic-based novel catalysts, heterojunctions, and cocatalyst have been proposed to offer new visible-light-active photocatalytic materials as potential substitutes of TiO$_2$ for the most relevant photocatalytic applications such as detoxification and disinfection, removal of inorganic pollutants, water splitting, and organic synthesis [17–19]. In this regard, the loading of cocatalysts or secondary semiconductors, which can act as either electron or hole acceptors for improved charge separation, is a promising strategy for enhanced catalytic activity. A more innovative implementation of this idea would be based on the use of polymer-based composites, which could allow enhanced charge separation with respect to the photocatalytic activity of the inorganic component alone. In this chapter, the state of the art on development of novel nanostructures and the concept of heterojunction for efficient visible-light-driven water splitting, organic or inorganic pollutant degradation, and organic transformation have been discussed. The structural features of various nanostructured catalysts and their correlation are explained in detail. An overview of recent research efforts in the applications of visible-light-active photocatalysts, which include semiconductor metal oxides (TiO$_2$, Fe$_2$O$_3$, Cu$_2$O, etc.), polymeric graphitic carbon nitride (C$_3$N$_4$), plasmonic nanostructures (Au, Ag, etc.), conducting polymers nanostructure (PEDOT, PANI, PDPB, etc.), heterostructures, and other novel materials in degradation of photocatalytic pollutants, hydrogen generation, CO$_2$ reduction, and selective redox organic synthesis are summarized.

1.2 Visible-Light-Driven Photocatalysis for Environmental Protection

Environmental pollution issues prompted the finding of potential solutions to clean up water and environmental detoxification via exploring clean energy routes through solar-light-induced photocatalysis. Extensive research has been done in the area of photocatalytic removal of organic, inorganic, and microbial pollutants using semiconductor photocatalysts (e.g., TiO$_2$, ZnO, and CdS) for wastewater purification [20–23]. The key to the success of solar energy conversion is the development of high-performance materials of well-matched photo absorption with solar spectrum (visible-light-harvesting capability), efficient photoexcited charge separation to prevent electron–hole recombination, and adequate energy of charges that carry out the photodegradation of dye and other toxic molecules. Continuous efforts have been made to generate active photocatalysts under visible light, but their efficiency is low due to fast charge recombination [24]. Many excellent reviews have also come up regarding the development of oxide-based semiconductors, in particular, TiO$_2$, via fine-tune of several electronic characteristics (e.g., atomic configuration, bandgap energy, band position, and lifetime of electrons and holes) [25–27]. In addition to dye sensitization, doping with metals and nonmetals, formation of heterojunctions have been extensively used to enhance the visible-light response of TiO$_2$ materials and discussed in detail in Chapters 2, 5, 6, 11, and 16. For example, TiO$_2$ doped with N, C, F, or S or its modification with metal nanoparticles has
extended its activity toward the visible region [15, 28–30]. Visible-light activities arise from the changes of bandgap structure of semiconductor via adsorbed modifiers (surface modification) or bandgap narrowing (doping). Synthesis of different materials, such as M/TiO₂ (M=Cu, Ag, Au, Pt, Pd, Bi, Ag—Au, Ag—Cu, Au—Cu, Ag—Pt), and the effect of metal modification on the photocatalytic activity have been discussed in Chapter 6. Moreover, Chen et al. reported disordered TiO₂ nanophase derived from hydroxylation through hydrogenation treatment, which marked as black TiO₂ and a considerable enhancement in visible-light-induced photocatalytic activity [31]. It has been reported that hydrogenation treatment induced the oxygen vacancies and Ti³⁺ sites in black TiO₂, resulting in the bandgap narrowing and the separation of photogenerated electrons and holes, which enhanced solar absorption and significantly improved the photocatalytic activity of TiO₂ [32, 33]. A variety of synthetic strategies of black TiO₂ are outlined, and the structural and chemical features, electronic properties, and catalytic activity of the black TiO₂ nanomaterials are described in Chapter 5. Furthermore, oxygen-rich layered titanium oxide is also useful for enhanced visible-light photoactivity [34, 35]. Kong et al. reported Ti—O—O coordination bond in layered titanium oxide (composed of TiO₆ layers, and interstitial hydrated H⁺ ions) initiated visible-light-driven photocatalytic activity [36]. Presence of Ti—O—O coordination bonds lowers the bandgap and promotes the charge separation of the photoinduced electron–hole pairs.

Another important example is combination of nanostructured plasmonic metals with a oxide-based semiconductor, which significantly enhanced the photocatalytic activity due to the local surface plasmon resonance (LSPR) effect with very large absorption and scattering cross sections [28, 29]. In fact, LSPR causes an optical antenna effect, which efficiently harvests light and localizes electromagnetic waves at the nanoscale, and the charge carrier formation with efficient separation is obtained at the semiconductor/liquid interface, which benefits the photocatalytic reactions [37–40]. A series of reactions have been tested on Ag, Au, and Cu surfaces, illustrating that low-intensity visible-photon illumination can significantly enhance the rates of chemical transformations as well as control reaction selectivity with different mechanisms as discussed in Chapter 6. Direct plasmonic photocatalysis is believed to occur through the transient transfer of energetic electrons to adsorbate orbitals and the nature of the adsorbate may have a significant impact to control selectivity in plasmon-driven reactions [17]. These heterogeneous oxide-based semiconductor photocatalysts have been also explored for the removal of inorganic wastewater pollutants including cyanide-containing waste and heavy metal pollutants, such as arsenic species and hexavalent chromium [41–43]. Notably, due to high toxicity and carcinogenicity of hexavalent chromium (Cr(VI)), the concentration of Cr(VI) in wastewater should be controlled in acceptable levels before its release in order to protect potable water supplies [44, 45]. Although, molecular CO₂ has a very low electron affinity and is chemically inert as well as very stable, photogenerated energetic electrons from photocatalysts can reduce CO₂ to methane (CH₄) and carbon monoxide (CO). The photocatalytic reduction of CO₂ using solar energy has drawn considerable attention, which mimics the biological photosynthesis in plants [46–48]. It combines the reductive half reaction of CO₂ fixation with
a well-matched oxidative half reaction of water oxidation, in order to achieve a carbon neutral cycle, which accomplished with the environment protection. Over the last few decades, various semiconductor photocatalysts, including metal oxide, sulfide, and oxynitride, have been investigated [49, 50]. However, the overall efficiency of the CO₂ photocatalytic reduction has been limited by the purification and separation of products. Consequently, efficient and selective production of highly valuable fuel compounds is a vital issue for practical CO₂ photoreduction systems. Despite of huge attempts to enhance visible-light activity by narrowing the bandgap of TiO₂ through doping, large-scale application is limited due to defect-induced charge trapping and recombination sites of photoexcited charge carriers. In this regard, plasmon-based photocatalysts have demonstrated significantly higher photocatalytic performance in comparison to other known visible-light photocatalysts (e.g., N-doped TiO₂); however, the poor photostability of silver salts reduced the photoactivity of the doped TiO₂ material, which limits its extensive use as a visible-light photocatalyst [15, 51–53]. Hence, a dopant-free, pure catalyst with a bandgap that matches the visible-light energy would be ideal. Numerous efforts have been made for the development of new visible-light-induced photocatalysts, and some oxides have shown visible-light-driven catalytic activity, such as InVO₄, BiVO₄, Bi₂MoO₆, WO₃, and Bi₂WO₆. Recently, visible-light-responsive photocatalytic activity of conjugated polymer nanostructures (CPNs) such as poly(diphenylbutadiyne) (PDPB) nanofibers, poly(3,4-ethylene dioxythiophene) (PEDOT) nanospindle, and poly(3-hexyl thiophene) (P3HT) nanospheres have been reported for degradation of organic pollutants [54–56]. These CPNs demonstrated high photocatalytic activity under visible light without the aid of sacrificial reagents or precious metal cocatalysts. These novel photocatalytic materials have been proposed as potential substitutes of TiO₂ for the most relevant photocatalytic applications, such as detoxification and disinfection, water splitting, and organicsynthesis.

Compared to individual semiconductor photocatalysts, composites of two or more semiconductor systems, that is, heterostructures, are advantageous in terms of more efficiently facilitating charge separation and charge carrier transfer, thereby substantially improving photocatalytic efficiency. A very large number of different semiconductor combinations have been investigated, such as metal/semiconductor, carbon group materials/semiconductor heterostructures, semiconductor/semiconductor heterostructures with different models including type I and type II heterojunctions, p–n heterojunctions, and Z-scheme [57–61]. Chapter 8 summarizes the recent strategies to develop such heterostructures and highlights the most recent developments in the field. For charge carrier separation, TiO₂ has been commonly used to form heterostructures with CdS [62, 63], CdSe [64], CuO [65], AgBr [66], PbS [67] for enhanced photocatalytic activities, such as degradation of organic molecules, H₂ generation, and CO₂ reduction. For example, the integration of a potential semiconductor nanocrystal, ZnO, with a narrow band-gap conducting polymer has also shown to be an effective means of promoting charge carrier separation and improving the utilization of solar light [68]. A deep understanding of the charge transfer process through fundamental studies toward the rational design of heterostructures exhibiting high visible-light-harvesting efficiency is addressed in Chapter 9. Similarly, the
1.2 Visible-Light-Driven Photocatalysis for Environmental Protection

use of multiple inorganic domains within these heterostructures enables a rapid dissociation of excitons into a spatially separated pair of charges that bears a minimal probability of the backward recombination, with a high extinction coefficient in the visible range and a low exciton binding energy, which is beneficial to photocatalytic applications [69]. In addition to metal oxides, metal sulfides or chalcogenides have been employed for photocatalytic applications [70]. Ganguli et al. reported a type II semiconductor, ZnO/CuS heterostructure, to increase the absorbance in the visible-light region and successful charge separation from CuS to ZnO through the hexagonal nanotubes (NTs) of ZnO, leading to enhanced visible-light-induced photocatalysis for the degradation of organic pollutants due to the efficient separation of photoinduced carriers [71]. Wang et al. synthesized mesoporous yolk–shell SnS$_2$–TiO$_2$ and applied them for the visible-light-driven photocatalytic reduction of Cr(VI) [72].

The two-dimensional (2-D) structure of graphene possessing the large surface area can accommodate semiconductor nanoparticles, and the injection of photoexcited electrons from the semiconductor particle can readily be transported along the graphene surface due to its superior electronic conductivity and high mobility of charge carriers [73–76]. Hence, graphene is a promising component to create efficient composite photocatalysts for dye degradation, organic transformations, and reduction of carbon dioxide (CO$_2$) [77, 78]. For example, Liang et al. prepared less defective graphene-P25 nanocomposites for the photocatalytic CO$_2$ reduction under visible light [79]. Yu et al. synthesized CdS nanorod/r-GO heterostructures, which demonstrated high catalytic activity for the CO$_2$ reduction with 10 times higher CH$_4$ production rate compared to pure CdS and even better than Pt loaded CdS [80]. Moreover, Meng et al. established the concept of photogenerated electron transfer from α–Fe$_2$O$_3$ nanoparticles to the graphene surface through transient absorption spectroscopy and time-domain terahertz spectroscopy, which increases the lifetime of charge carriers and, consequently, improve the photocatalytic activity [81]. Li et al. showed bandgap engineering and enhanced interface coupling of graphene–BiFeO$_3$ nanocomposites by the formation of Fe–O–C bonds, which demonstrated enhanced photocatalytic activity under visible-light illumination [82]. Yang et al. synthesized functionalized graphene sheets/ZnO nanocomposites that exhibited an enhanced photocatalytic activity for the degradation of rhodamine [83]. Zhang et al. showed the excellent performance of CdS–graphene nanocomposite photocatalyst for selective oxidation of alcohol to corresponding aldehyde [84]. Moreover, Han et al. successfully prepared ternary CdS/ZnO/graphene composite, which showed enhanced visible-light-induced photocatalytic activity in comparison to binary composites and pure ZnO and CdS [85]. Hence, this study highlights the significance of charge transport on graphene surface of heterostructures during catalysis reaction. Recently, another graphene-like material, layered structures of MoS$_2$ have been used as a cocatalyst to modify different semiconductors for hydrogen production and pollutant removal [86–88]. Zhou et al. prepared few-layered MoS$_2$ nanosheet-coated TiO$_2$ nanobelt heterostructures to increase the visible-light absorption ability of TiO$_2$, and MoS$_2$/TiO$_2$ composites showed high photocatalytic activity in the degradation of organic dyes [89]. Another example, few-layered MoS$_2$/BiOBr hollow microspheres demonstrated superior
visible-light-response photocatalytic activity for ciprofloxacin and rhodamine B removal in comparison to BiOBr alone [90]. The conduction band (CB) edge potential of MoS$_2$ (≈ -0.09 eV) is more negative than that of BiOBr (0.29 eV), and the valence band (VB) of BiOBr (3.06 eV) is more positive than that of MoS$_2$ (1.81 eV). The energy difference between the CB edge potentials of MoS$_2$ and BiOBr leads to the transfer of the electrons from the CB of MoS$_2$ to that of BiOBr. Hence, the photogenerated electrons can be collected by BiOBr, and holes can be collected by MoS$_2$, which causes effective charge separation and can be reflected in enhanced photocatalytic activity. Graphitic carbon nitride (g-C$_3$N$_4$) considered as a low-cost photocatalytic system having a graphene-like structure consisting of two-dimensional frameworks of tri-s-triazine connected via tertiary amines with a bandgap of ≈ 2.7 eV, corresponding to an optical wavelength of 460 nm in the visible-light range [91, 92]. Hence, two-dimensional g-C$_3$N$_4$ nanosheets having a graphene-like structure consisting of two-dimensional frameworks of tri-s-triazine connected via tertiary amines also offers large surface area and active sites, which are beneficial for photocatalytic oxygen evolution and CO$_2$ photoreduction [93, 94]. Moreover, transition-metal-based inorganic compounds have also been coupled with g-C$_3$N$_4$ for the fabrication of noble-metal-free heterostructured photocatalysts. The composites of g-C$_3$N$_4$ and metal oxides (e.g., TiO$_2$, ZnO, In$_2$O$_3$, and Bi$_2$WO$_6$) have been investigated by various research groups for CO$_2$ photoreduction [95–98]. Chapter 15 covers the current progress of visible-light-induced conversion of CO$_2$ to fuels by heterogeneous photocatalysts over the metal oxides, sulfides, phosphides, oxynitrides, and organic semiconductors as well as highlights the importance of graphitic carbon nitrides as emerging photocatalyst.

Another way to extend the range of TiO$_2$ activity to the visible region is modification with visible-light-absorbing dyes such as rose bengal, chlorophyllin, porphyrins, or phthalocyanines [99–101]. Dye-modified TiO$_2$ can be used for visible-light-assisted photocatalytic degradation of a great variety of organic pollutants from wastewater effluents either by oxidative or reductive processes. Sensitization of TiO$_2$ and other photocatalysts by modification with dyes has been reviewed in Chapter 10, with an emphasis on the physicochemical properties of the modified photocatalysts, the mechanisms involved in the transformation of pollutants, and the possible technological applications. However, the use of organic dyes as sensitizers of semiconductors has the disadvantage of gradual degradation of organic molecules, which in turn affects the stability of catalysts.

1.3 Photocatalysis for Water Splitting

Solar H$_2$ production by photocatalytic water splitting appears to be an attractive route to store solar energy in chemical bonds from renewable resources (water and sunlight) [102, 103]. However, the complexity of resolving the complete water splitting problem, structure–property relationships of photocatalysts for the two half reactions of water splitting, hydrogen and oxygen evolution reactions in the
presence of sacrificial reagents have been studied extensively [104, 105]. Hence, light-driven water splitting is recognized as one of the major scientific challenges for hydrogen production. Since the first pioneer report of photocatalytic water splitting using titanium dioxide by Fujishima and Honda, numerous research studies have been conducted on semiconductor materials with proposed mechanisms of photocatalytic water splitting [47]. A photocatalytic system for the photoreduction of protons to produce H_2 consists of a photosensitizer, a catalyst, and sources of protons and electrons [104]. The reaction is first initiated by photon absorption, which generates numerous electron–hole pairs with sufficient potentials. The relevant photoreduction processes involve

i) absorption of light by the photosensitizer and subsequent internal charge separation
ii) intermolecular charge transfer (i.e., reduction of the catalyst by the photosensitizer and reduction of the photosensitizer by direct hole donation from a sacrificial electron donor)
iii) catalytic formation of H_2 by the reduced catalyst.

Sacrificial electron acceptors ($S_2O_8^{2-}$, $Ce(SO_4)_2$, $FeCl_3$, Ag^+ from $AgNO_3$, etc.) and donors (ethanol, methanol, triethanolamine, Na_2S, $Na_2S_2O_3$, and Na_2SO_3) control the production of either hydrogen (electron donor) or oxygen (electron acceptor) by combining with the respective charge carrier. The fundamental aspects of direct photoelectrochemical (PEC) water splitting at semiconductor electrodes are discussed along with recent experimental progresses in Chapter 3. The roles of different experimental parameters for successful water-splitting systems are also included. An overview of recent research progress in photochemically induced water splitting into hydrogen and oxygen with emphasis on new electrode materials, theoretical advances, and the development of experimental methods for light-driven water-splitting reactions has been discussed in Chapter 13 to identify stable, efficient, and cost-effective light-driven Photocatalytic systems. Now the challenge is to fabricate earth-abundant photoelectrodes and catalyst materials with high efficiency, good durability, and low cost. Recently, new visible-light-responsive photoelectrodes, including $\alpha-Fe_2O_3$, $BiVO_4$, WO_3, CdS, C_3N_4, and photoanodes have been tested for water splitting [106–109]. However, severe recombination of photogenerated electron–hole pairs on the surface results in poor performance of photocatalysts. Various attempts have been made to improve the performance of photocatalysts via doping, loading of cocatalysts, and heterojunctions [19, 57, 110–113]. Alivisatos and co-worker reported the design of multicomponent nanoheterostructures composed of platinum-tipped cadmium sulfide rod with an embedded cadmium selenide tips as highly active catalysts for hydrogen production with an apparent quantum yield of 20% at 450 nm [114]. Zhang et al. fabricated two-dimensional titania/cadmium sulfide heterostructures through a controlled sol–gel method with an excellent hydrogen evolution activity under visible-light irradiation and an apparent quantum yield of 6.9% at 420 nm [115]. Cao et al. developed a highly efficient and robust heterogeneous
photocatalytic material for hydrogen generation (254,000 μmol h⁻¹ g⁻¹ for the initial 4.5 h) using the CoP/CdS hybrid catalyst in water under solar irradiation [116]. Kozlova et al. synthesized a multiphase photocatalyst Cd₁₋ₓZnₓS/TiO₂ with 3D ordered meso-/macroporous structure for H₂ evolution reaction from aqueous solutions of Na₂S/Na₂SO₃ under visible-light irradiation [117]. Zong et al. have employed MoS₂/CdS hybrid structure as a catalyst for photocatalytic H₂ evolution under visible-light irradiation [118]. Wang and co-workers developed shish-kebab-like multiheterostructured metal chalcogenides (CdS—Te, NiS/CdS—Te, and MoS₂/CdS—Te) photocatalysts to exhibit enhanced efficiency and stability toward photocatalytic H₂ generation due to intimate interactions between CdS and multicomponent cocatalysts, together with improved separation of photogenerated carriers due to the presence of Te nanotubes and trace CdTe [119]. A series of MoS₂-based heterostructures, such as MoS₂/TiO₂ and MoS₂/graphene, have been tested for enhanced visible-light photocatalytic activities [87, 120]. Shen et al. showed one-dimensional MoS₂ nanosheet/porous TiO₂ nanowire hybrid nanostructures that facilitated charge separation and enhanced hydrogen generation rate of 16.7 mmol h⁻¹ g⁻¹ in visible light. Chang et al. synthesized MoS₂/G-CdS composite with an unexpected hydrogen evolution reaction activity. MoS₂/G-CdS demonstrated as a promising photocatalyst with high efficiency and low cost for photocatalytic H₂ evolution reaction with a 1.8 mmol h⁻¹ H₂ evolution rate in lactic acid solution corresponding to an apparent quantum efficiency (AQE) of 28.1% at 420 nm, which is much higher than that of Pt/CdS in lactic acid solution. Graphitic carbon nitride, another carbon-based π-conjugated semiconductor material with a planar phase analogous to graphite, is also suitable for photocatalytic hydrogen production from water splitting made catalytic applications [121, 122]. However, quantum yields under visible light for H₂ production from water using g-C₃N₄ is still limited (not exceed 4%) due to the high recombination rate of the photoinduced electron–hole pair [91, 93]. Synthesis of porous g-CN, heteroatom-doped g-CN, metal-doped g-CN, structural modification with organic groups, metal oxide-g-CN composites, g-CN-graphene/CNT composites, and g-CN-based Z-scheme with enhanced photocatalytic activity for either H₂ or O₂ generation has been discussed in Chapter 12. Different nanostructured g-CN materials, such as nanosheets, nanospheres, and quantum dots, covalent organic frameworks (COFs), such as hydrazone COFs, donor–acceptor heptazine systems, and conjugated microporous polymers (CMPs) based on pyrene prepared from various C—C coupling reactions for water-splitting applications have also been focused in detail. Excellent performance was realized by hybridization of g-C₃N₄ with other cocatalysts. For example, metal sulfides, such as NiS, MoS₂, WS₂, and hydroxides, such as Ni(OH)₂ and Co(OH)₂, have been successfully deposited on g-C₃N₄ as cocatalysts for improved photocatalytic hydrogen production [123–126]. Meng et al. incorporated g-C₃N₄ into Ag₃PO₄, which exhibited an improved catalytic activity for the degradation of methylene blue under visible-light irradiation [127]. The synergic effect between between g-C₃N₄ and Ag₃PO₄ led to structural stability for silver phosphate and high separation efficiency owing to the well- positioned CB and VB and consequently improved photocatalytic activity. Besides the single-phase and heterostructure-based photocatalysts,
1.4 Photocatalysis for Organic Transformations

Z-scheme photocatalyst, which contains two semiconductor photocatalyst systems, is another way to achieve efficient water splitting [128–130]. Each photocatalyst is responsible for one half reaction either H₂ or O₂ production or a new mediator to efficiently transfer charge between two photocatalysts that inhibit the fast unfavorable recombination of charge. Few examples of Z-scheme semiconductor–metal–semiconductor heterostructures have shown promising results for photocatalytic water splitting or CO₂ reduction [131, 132]. Notably, the electron storage and transport capabilities of graphene make it an effective mediator to separate the H₂ and O₂ evolution on different catalysts, such as ZnO, BiVO₄, CdS, TiO₂-based Z-scheme overall water splitting [133, 134]. Various other photocatalysts can be used as a hydrogen evolution photocatalyst in a Z-scheme water-splitting system, most notably nitrides and oxynitrides [135–138]. Chapter 13 provides a broad overview on photochemically induced water splitting to generate hydrogen and oxygen with various photocatalytic systems. However, the overall working efficiency in this Z-scheme is limited by the slow diffusion of redox couple ions and the competitive backward reactions between them. Moreover, “all-solid-state” Z-scheme based on ternary heterostructure of semiconductor–metal–semiconductor by using noble metals as the electron mediator to substitute solution-based redox couples has been also proposed [132, 139]. However, there is still a lack of solid evidence to verify the proposed Z-scheme electron transfer path.

1.4 Photocatalysis for Organic Transformations

The photocatalytic solar energy conversion has attracted increasing attention for organic transformations in order to develop environmentally friendly and new methodologies for selective redox organic synthesis at lower cost [140–142]. The visible-light-active photocatalysts, such as metal oxides, plasmonic photocatalysts, and polymeric carbon nitride, has been utilized for the selective redox organic transformations are classified as follows [143]:

i) The oxidation of alcohols, amines, alkenes, and alkanes, the hydroxylation of aromatic compounds with O₂

ii) The Cₐ—H bond activation and functionalization with nucleophiles to construct new C—C or C—X (X=O, N, or S) bonds

iii) The reduction of nitrobenzenes to corresponding amino benzenes or azobenzenes with sacrificial agents under O₂-free conditions.

Metal oxides have been widely employed to achieve selective organic transformation under visible-light irradiation. For example, surface-modified TiO₂ with carboxyl group, such as ethylenediaminetetraacetic acid, or phenolic hydroxyl group could initiate photocatalytic redox reactions under visible-light irradiation [144, 145]. Visible-light-induced oxidation of alcohols to corresponding carbonyl compounds on anatase TiO₂ was reported by Higashimoto et al. [146] The selective formation of imines from primary amines was achieved under visible-light irradiation using high-surface-area anatase TiO₂ or Nb₂O₅.
catalysts [147–149]. However, such organic transformation is limited by the adsorption of reactant molecule on the catalyst surface. In fact, activation of a sp2 C—H bond in a benzene ring could not be achieved by this methodology. Metal oxides suffer from limited range of visible-light absorption. Furthermore, surface plasmon resonance (SPR)-induced nanostructured Au, Ag, and Cu supported on metal oxides provide an efficient pathway toward such photoredox organic transformation. Au/TiO$_2$ can be used as an efficient photocatalyst for the selective aerobic oxidation of alcohols in toluene or water under visible-light irradiation [150, 151]. Aromatic alcohols can be selectively transformed into corresponding aldehydes with O$_2$ in water using Au/CeO$_2$ as catalysts [152]. Additionally, a wide range of binary or tertiary metal oxides, such as TiO$_2$, WO$_3$, ZnO, In$_2$O$_3$, and SrTiO$_3$, have been tested as supports to carry out organic transformations under solvent-free conditions with high selectivity. However, the conversion efficiency was very low (0.5%) and plasmonic photocatalysts are more expensive. Alternatively, polymeric graphitic carbon nitride (g-C$_3$N$_4$) can be utilized as a metal-free visible-light photocatalyst for selective redox reactions at high temperature and O$_2$ pressure in addition to visible light [153, 154]. Aerobic oxidation of both aromatic alcohols and aliphatic alcohols into the corresponding aldehydes, selective oxidation of α-hydroxy ketones to 1,2-diketones and the oxidation of primary benzylic amines, and secondary benzylic amines to corresponding imines on mesoporous C$_3$N$_4$ have been achieved under visible-light irradiation at high temperature. It would be ideal to use room temperature for visible-light-induced organic synthesis; in fact, selective aerobic oxidation of organic substrates at room temperature has been reported with C$_3$N$_4$ as a photocatalyst [155]. Moreover, g-C$_3$N$_4$ can also act as the support material for transition metals and play an active role in the visible-light-induced hydroxylation of benzene with H$_2$O$_2$ [156]. Although g-C$_3$N$_4$ is stable, low-cost catalysts but elevated temperature and high O$_2$ pressure are required to achieve the desired conversions. Alternatively, organic dyes show potential photocatalytic activity for selective organic transformations under ambient conditions. The utilization of the organic dyes for visible-light-driven organic synthesis, which provides an energetically beneficial pathway, has been elaborated in Chapter 14. The photoredox catalytic methods for the activation of carbon–halogen bonds of both alkyl and aryl halides for systematically are described in Chapter 4. In this regard, various interesting strategies have been developed for visible-light-induced asymmetric redox catalysis in which efficient catalytic photochemical processes happened under stereochemical control and provide chiral molecules in an asymmetric manner for chemical transformation [157–161]. Moreover, novel asymmetric photoredox catalysts having the metal center simultaneously serve as the exclusive source of chirality, the catalytically active Lewis acid center, and the photoredox center, which offer new opportunities for the synthesis of nonracemic chiral molecules by visible light [162]. Hence, the development of visible-light-promoted photocatalytic reactions, which enable rapid and efficient synthesis of chemicals, is highly advantageous in terms of cost, safety, and environmental friendliness.
1.5 Mechanistic Studies of Visible-Light-Active Photocatalysis

In addition to the experimental observations, charge transfer mechanism across the semiconductor/semiconductor/metal junctions has been proposed and the resultant activity enhancement is also discussed [163]. The various techniques, such as transient-state surface photovoltage measurement, transient-state absorption spectra, and time-resolved microwave conductivity method (TRMC), are reviewed for photogenerated charge separation during catalysis [164]. The role of various active species, such as trapped electron and hole, superoxide radical and hydrogen peroxide (O$_2^{\cdot-}$ and H$_2$O$_2$), hydroxyl radical (OH$^\cdot$), singlet molecular oxygen (1O$_2$) generated during catalysis, has been discussed in Chapter 17. A number of chemical probes are generally used to quantify the photocatalytic activity and also to indirectly identify the primary reactive species. The different theories concerning the nature of the active species are also conferred in view of the experimental results in Chapter 17.

Theoretical and computational models can be used to understand the electronic density of states and band structure of semiconductor in order to design a rational photocatalyst [165]. With high accuracy and decrease in computational costs, high-throughput computational screening has been utilized in order to realize the various aspects of photocatalytic reactions, such as light absorption, electron/hole transport, band edge alignment of semiconductors, and surface photoredox chemistry [166–171]. Computational methods are especially helpful for prediction of impurity states induced by dopants in tuning bandgaps in photocatalytic systems, such as TiO$_2$ [172]. In this regard, density functional theory (DFT) has been employed as a theoretical method to predict and understand the electronic structure of materials due to high accuracy and predictive power [173–175]. However, the inaccurate prediction of bandgaps is the major drawback of DFT. Additionally, time-dependent density functional theory (TD-DFT) is not widely used, and few studies implementing these methods are cluster-based models for water-splitting systems [176]. It is crucial to obtain a complete understanding of electron transfer phenomena to improve the performance of photocatalysts. The theoretical methods are being used to study the dynamics of charge separation, diffusion, relaxation, recombination, and related phenomena using ab initio nonadiabatic molecular dynamics [177]. Chapter 19 is dedicated to the computational modeling of photocatalysis, with an emphasis on reactive dynamics and quantum effects, such as zero-point energy, tunneling, and nonadiabatic transitions to predict excited-state electron-nuclear energy redistribution, nuclear dynamics, charge carrier dynamics, carrier recombination, and energy relaxation pathways in photocatalytic systems. Nevertheless, at present, computational screening studies on photoactive materials are very limited, which have the potential for the invention of novel materials.

A special chapter (Chapter 20) provides an overview of solar photocatalytic reactor designs on larger scale field and pilot-scale studies utilizing solar
illumination for the purification of water with nanoscale metal-oxide photocatalysts as well as their broader impacts on the environment. This chapter includes the design and fabrication of the various reactors with an emphasis on the barriers to the commercial application of this technology and environmental nanotoxicology for photocatalytic materials.

1.6 Summary

Design of nanoarchitectures and smart hybridization with specific active materials has emerged as an interesting platform for light-harvesting and visible-light-driven photocatalysis. The current status of research on nanostructures of common semiconducting materials has been highlighted for photocatalytic energy conversion and utilization including photocatalytic water splitting and CO₂ reduction, and other photo-assisted reactive applications, such as pollutant degradation, selective conversion of organic compounds, and biological disinfection. In the past few years, much progress has been made in the design and synthesis of functional materials based on either metal oxides or semiconductors to achieve efficient light-harvesting capacity. Research in this area is continuing to grow with the objective of tuning the intrinsic properties of catalysts, such as excellent light absorption, rapid charge separation, transport, and collection, as well as rapid kinetics of interfacial reactions and mass transport of reactants in nanodimension. The advanced functionality and improved performance for practical applications of the visible-light-active nanostructured catalysts have been also highlighted. Here, key areas are identified that will need particular attention as the search continues for stable, efficient, and cost–effective light-driven photoelectrolysis systems that exploit electron/hole separation in semiconductor/electrolyte junctions. Synergistic and cooperative interactions among different functionalities in nanohybrids open novel strategy for designing molecular materials for photocatalysis, light harvesting, and artificial photosynthesis. Careful selection of a specific combination of semiconductors to obtain desired band-gap energy would demonstrate successful synthesis of high-quality hybrid nanostructures with enhanced photo-stability and photocatalytic efficiency. It may be concluded that hybrid nanostructures containing diverse functionalities and active materials will be assembled to harvest solar light for future energy crisis and water splitting or carbon dioxide reduction with energy input from sunlight. Moreover, the efficiency of photocatalytic reduction of CO₂ could be deactivated after long irradiation; therefore, it is necessary to pay more attention on the semiconductor deactivation issue in future work. Until now, there have been few reports dealing with the interpretation and theory background behind the observed collective phenomena of heterostructures. Theoretical studies would lead to rational improvement of band structure and morphological design of photocatalytic materials for the discovery of new materials.
References

References

References

