Contents

List of Contributors xi
Preface xv

1 Surfaces in Nature 1
Mehmet Gürsoy and Mustafa Karaman
1.1 Introduction 1
1.2 Inspiring Natural Surface Structures 2
1.2.1 Self-Cleaning Surfaces 2
1.2.2 Adhesive Hydrophobic Surfaces 6
1.2.3 Unidirectionally Superhydrophobic Surfaces 7
1.2.4 Fog Harvesting Surfaces 9
1.2.5 Anti-reflective Surfaces 10
1.2.6 Structural Color 11
1.2.7 Drag Reduction and Antifouling Surfaces 13
1.2.8 Adhesive Surfaces 13
1.3 Conclusion 15
References 16

2 Chemical and Physical Modification of Surfaces 23
Mustafa Karaman, Mehmet Gürsoy, Mahmut Kuş, Faruk Özel, Esma Yenel,
Özlem G. Şahin, and Hilal D. Kivrak
2.1 Introduction 23
2.2 Vapor Deposition Processes 24
2.2.1 Physical Vapor Deposition 24
2.2.1.1 Types of PVD Processes 25
2.2.2 Chemical Vapor Deposition 29
2.2.2.1 CVD Reactors 31
2.2.2.2 Basic Principles of CVD: Thermodynamics, Chemistry, Heat, and Mass
Transfer 33
2.2.2.3 Various Types of CVD 37
2.2.2.4 Chemical Vapor Deposition of Polymeric Thin Films 40
2.2.3 Atomic Layer Deposition (ALD) 46
2.3 Wet Coating Techniques 48
2.3.1 Sol–Gel Coating 48
2.3.1.1 Effect of pH 49
2.3.1.2 Water Content 49
2.3.1.3 The Types of Precursors 50
2.3.1.4 Temperature, Drying, and Aging 51
2.3.1.5 Sol–Gel Coatings 52
2.3.2 Electrospinning 52
2.3.2.1 Emulsion Electrospinning 55
2.3.2.2 Coaxial Electrospinning 55
2.3.2.3 Melt Electrospinning 55
2.3.3 Electrolytic Anodization 56
2.3.4 Electroplating 57
2.3.5 Electroless Plating 58
2.3.6 Electrophoretic Deposition 59
2.3.7 Dip Coating 59
References 60

3 Surface Characterization Techniques 67
Gökhan Erdoğan, Günnur Güler, Tuğba Kiliç, Duygu O. Kiliç, Beyhan Erdoğan, Zahide Tosun, Hilal D. Kvırkı, Uğur Türkın, Fatih Özcan, Mehmet Gürsoy, and Mustafa Karaman
3.1 Introduction 67
3.2 Surface Characterization Methods 67
3.2.1 X-ray Spectroscopy Techniques 67
3.2.1.1 X-rays Florescent Spectroscopy 68
3.2.1.2 X-ray Diffraction Technique 69
3.2.1.3 X-ray Photoelectron Spectroscopy 71
3.2.2 Surface Characterization with FTIR Spectroscopy 72
3.2.2.1 FTIR Spectrometers 73
3.2.2.2 Methods and Sampling Techniques 74
3.2.2.3 Advantages and Disadvantages of FTIR Spectroscopy 76
3.2.2.4 Applications of FTIR Spectroscopy 77
3.2.3 Nuclear Magnetic Resonance Spectroscopy 79
3.2.3.1 Theory of NMR Spectroscopy 80
3.2.3.2 Types of NMR Spectroscopy 81
3.2.3.3 Instrumentation and Sample Handling 82
3.2.3.4 Applications of NMR 83
3.2.4 Electron Microscopes 83
3.2.4.1 Scanning Electron Microscope (SEM) 84
3.2.4.2 Environmental Scanning Electron Microscopy (ESEM) 87
3.2.4.3 Transmission Electron Microscope 89
3.2.5 Scanning Probe Microscopy 95
3.2.5.1 Working Principle 96
3.2.5.2 Operating Modes of SPM 97
3.2.5.3 Contact Mode AFM 97
3.2.5.4 Noncontact Mode AFM 98
3.2.5.5 Intermittent Contact Mode AFM 98
3.2.5.6 Closed Cell Liquid AFM 98
3.2.5.7 STM 98
4 Surface Modification of Polymeric Membranes for Various Separation Processes
Woei-Jye Lau, Chi-Siang Ong, Nik Abdul Hadi Md Nordin, Nur Aimie Abdullah Sani, Nadzirah Mohd Mokhtar, Rasoul Jamshidi Gohari, Daryoush Emadzadeh, Ahmad Fauzi Ismail
4.1 Introduction 115
4.2 Methods of Membrane Surface Modification 116
4.2.1 Blending 116
4.2.1.1 Polymer–Polymer Blending 116
4.2.1.2 Polymer–Inorganic Blending 117
4.2.2 Surface Coating 118
4.2.2.1 Interfacial Polymerization 118
4.2.2.2 Layer-by-Layer Coating 119
4.2.2.3 Sol–Gel Coating 120
4.2.2.4 Spin Coating 123
4.2.3 Photo-Initiated Polymerization 124
4.2.3.1 UV-Initiated “Grafting-to” Membrane Surface 124
4.2.3.2 UV-Initiated “Grafting-from” Membrane Surface 125
4.2.4 Other Surface Modification Methods 127
4.3 Advancements of Surface-Modified Membranes for Various Separation Processes 128
4.3.1 Wastewater Treatment 128
4.3.1.1 Ultrafiltration and Forward Osmosis for Oily Wastewater 128
4.3.1.2 Nanofiltration and Membrane Distillation for Textile Wastewater 134
4.3.2 Drinking Water Production 142
4.3.2.1 Reverse Osmosis and Forward Osmosis for Brackish Water/Seawater Desalination 142
4.3.2.2 Adsorptive Ultrafiltration for Underground Water 148
4.3.3 Dense Membrane for Gas Separation Process 153
4.3.4 Solvent Resistant Nanofiltration Membrane for Organic Solvent Application 164
4.4 Conclusions 171
References 173

5 Langmuir–Blodgett Films: Sensor and Biomedical Applications and Comparisons with the Layer-by-Layer Method
Epameinondas Leontidis
5.1 Introduction 181
5.2 Langmuir–Blodgett Films: General Discussion 184
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>Deposition Methods, Film Materials, and Substrates</td>
<td>184</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Applications of LB Films</td>
<td>187</td>
</tr>
<tr>
<td>5.3</td>
<td>LB Films of Nanoparticles</td>
<td>188</td>
</tr>
<tr>
<td>5.4</td>
<td>LB Films as Sensors</td>
<td>189</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Types of Sensors</td>
<td>189</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Gas Sensors</td>
<td>190</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Sensors for Ions and Other Solution Components</td>
<td>193</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Biosensors</td>
<td>195</td>
</tr>
<tr>
<td>5.5</td>
<td>LB Films in Biomedicine</td>
<td>196</td>
</tr>
<tr>
<td>5.6</td>
<td>LB and LbL Methods: a Brief Comparison</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>199</td>
</tr>
<tr>
<td>6</td>
<td>Surface Modification of Biopolymer-Based Nanoforms and Their Biological Applications</td>
<td>209</td>
</tr>
<tr>
<td></td>
<td>Susana C. M. Fernandes</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>209</td>
</tr>
<tr>
<td>6.2</td>
<td>Nanocellulose and Nanochitin</td>
<td>209</td>
</tr>
<tr>
<td>6.3</td>
<td>The Unique Biological Properties of Nanocellulose and Nanochitin</td>
<td>212</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Nanocellulose</td>
<td>212</td>
</tr>
<tr>
<td>6.3.1.1</td>
<td>Biodegradability</td>
<td>212</td>
</tr>
<tr>
<td>6.3.1.2</td>
<td>Biocompatibility</td>
<td>213</td>
</tr>
<tr>
<td>6.3.1.3</td>
<td>Low Cytotoxicity</td>
<td>213</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Nanochitin</td>
<td>214</td>
</tr>
<tr>
<td>6.4</td>
<td>Functional Surface Modification</td>
<td>214</td>
</tr>
<tr>
<td>6.4.1.1</td>
<td>To Improve Nanocellulose’s Biodegradability</td>
<td>215</td>
</tr>
<tr>
<td>6.4.1.2</td>
<td>To Expand Nanocellulose’s Biocompatibility</td>
<td>215</td>
</tr>
<tr>
<td>6.4.1.3</td>
<td>To Expand Nanochitin Applications</td>
<td>217</td>
</tr>
<tr>
<td>6.4.2</td>
<td>For Antimicrobial Applications</td>
<td>218</td>
</tr>
<tr>
<td>6.4.2.1</td>
<td>Introduction of Antimicrobial Activity to Cellulose Nanoforms</td>
<td>218</td>
</tr>
<tr>
<td>6.4.2.2</td>
<td>Expansion of Antimicrobial Activity of Chitin Nanoforms</td>
<td>220</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary and Final Remarks</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>221</td>
</tr>
<tr>
<td>7</td>
<td>Enzyme-Based Biosensors in Food Industry via Surface Modifications</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Nilay Gazel and Huseyin B. Yildiz</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>7.2</td>
<td>Biosensors</td>
<td>228</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Historical Perspectives of Biosensors</td>
<td>229</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Parts of Biosensors: Bioreceptor and Transducer</td>
<td>230</td>
</tr>
<tr>
<td>7.3</td>
<td>Enzymes</td>
<td>234</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Enzyme Commission Numbers</td>
<td>235</td>
</tr>
<tr>
<td>7.3.1.1</td>
<td>EC1 Oxidoreductases</td>
<td>237</td>
</tr>
<tr>
<td>7.3.1.2</td>
<td>EC2 Transferases</td>
<td>238</td>
</tr>
</tbody>
</table>