Index

a
- absolute tolerance 29
- avoiding obstacles 53

b
- bound constraint 165, 188, 254
- bound constraints 52, 141

c
- Cartesian acceleration 28
- Cartesian path 3, 161
- Cartesian position error 214
- Cartesian space 17, 37, 40, 140, 162, 212, 229
- Cartesian velocity 70
- closed-loop control 233
- collision avoidance 161
- collision-free requirement 53
- compact QP method 50
- comparison 11, 33, 50, 77, 105, 109, 130, 147, 162, 171, 192, 207, 216, 247
- computation efficiency 211
- computational complexity 165
- computational schemes 161
- computer simulation 9, 29, 38, 52, 61, 77, 101, 184, 187, 204, 216, 234
- computer-simulation results 36, 43, 45, 128, 140, 144, 146, 147, 151, 159, 162, 177, 178, 180
- computing time 83, 85, 88, 165, 254
- configuration 183
- constant coefficient 218
- continuation technique 187
- control command 251
- control input 252
- convergence property 61, 125, 132, 142, 166, 249
- conversion technique 184
- critical point 53
- critical-point Jacobian matrix 53
- cyclic motion 69

d
- decision variable vector 187
- design parameter 147, 187
- design procedure 141
- desired Cartesian trajectory 139
- desired configuration 143
- desired end-effector task 89, 213
- desired path 11, 18, 28, 38, 51, 81, 86, 97, 216, 246, 248
- differentiable function 252
- differential equations 69
- distance-maximizing methods 53
- DOF 3, 17, 19, 22–27, 35, 45, 69, 121, 124, 125, 128, 130, 132–134, 136, 139, 161, 183, 184, 188, 197, 204–208, 229, 231, 251, 255
- drift-free motion planning and control 248
- drift-free redundancy resolution 140
- drift-free scheme 239
- DTZD 7
- dual decision variable vector 166, 189
- dual decision vector 164
- dual neural network 50
- dual-neural-network 57
dynamic configuration 161
dynamic equation 164
dynamic nonlinearities 139
dynamic system 166
dynamical system approach 50
eight-way directional pad 287
elliptical path 85
end-effector 161
end-effector position error 239
end-effector primary task 49
energy function 163
engineering application 216
environmental constraints 139
equality constraint 142, 164, 166, 189, 254
equality-based collision-free formulation 53
equivalence analysis 181
error analysis 195
escape velocity 53
escape-velocity direction 53
explicit expression 211
external obstacles 53
FAMJM 112
feasible region 52, 214
feasible solutions 161
feasible-solution region 69
feedback 4, 38, 58, 70, 166, 214, 230
feedback-controlled servo motor 231
final error 195
final state 104, 105, 121, 154, 194, 207
force disturbance 233
forward-kinematic equation 70, 184
forward-kinematics mapping 3
functional constraints 49, 139, 183
Gaussian elimination 50
GD 4, 17–19, 27–29, 36–38, 163
global convergence 60
global exponential convergence 122, 162
global kinetic-energy minimization 55
global methods 230
gradient dynamics 4, 27
gradient method 50
handling joint physical limits 52
hardware experiments 240
hardware implementation 50, 174
hardware system 231
high-order nonlinear computation 230
higher precision 214
homogeneous solution 3, 139, 161, 213
Hopfield neural network 4
horizontal work-plane 216
host computer 71, 78, 189, 251, 252
IIWT 56, 64
inequality-based criterion 53
inequality-based physical limits 165
inequality-constraint based formulation 54
inertia-weighted performance index 55
initial configuration 143
initial joint state 78
initial joint velocity 124
initial state 194
instantaneous kinetic energy 55
intensity coefficient 52
inverse kinematic resolution 161
inverse kinematics 3
inverse-free solution 27
inverse-kinematic problem 139, 161
inverse-kinematics solutions 140
Jacobian matrix 4, 53, 163, 211, 252
Jacobian matrix inversion 230
Jacobian pseudoinverse 165
JAL 28, 45
JCMP 254, 257, 259
joint deceleration 52
joint displacement 140
joint limits 52, 53, 89, 100, 122, 123, 141, 183, 187, 201, 211, 229
joint motion 58, 96, 105, 121, 139, 161, 201, 252
joint physical limits 49, 52, 55, 139–141, 161–163, 197
joint space 139, 201, 212, 229, 233
joint torque optimization 49
Index

k
Karush–Kuhn–Tucker conditions 50
kinematic control 70, 159
kinematic manipulability 211, 212
kinematic mapping 211
kinematic singular point 211
kinematic singularities 167
kinematically redundant manipulators 139

l
limited range 143, 145
line-segment path 78
linear projection equations 58
linear variational inequality 141, 211
local instabilities 49
local methods 230
local redundancy-resolution schemes 50
LVI 50, 69, 96, 121, 141, 184, 188, 201, 211, 215, 216
LVIAPDNN 162
Lyapunov 99

m
M4 algorithm 238, 241, 242
manipulability 201–205, 208, 209
manipulability-maximization 215
manipulation ability 212
manipulator behavior 234
mathematic equations 252
mathematical expressions 233
MATLAB 96, 166
matrix inversion 50, 211, 230
matrix-matrix multiplication 230
maximum computing time 83
maximum iteration number 238
maximum running time 238
mechanical limits 69
middle-value 202
minimum kinetic energy 55
minimum number 49
minimum torque norm 56
minimum-norm particular solution 3, 139, 161
MKE 55, 56, 61, 64
modeling error 233
MTN 56, 64
MVN 3, 4, 55, 56, 64, 69, 218, 251

n
neural-dynamics method 4
neural-network approach 164
NN 69
non-redundant manipulator 183
non-redundant manipulators 49, 139
non-repetitive problem 234
nonzero initial/final joint-velocity phenomenon 213
null-space method 49
numerical algorithm 85, 125, 132–134, 136, 238
numerical algorithm 94LVI 59, 212, 231, 237, 238, 259
numerical algorithm E47 59, 184
numerical algorithms E47 and 94LVI 59
numerical-computing algorithm 184

o
obstacle avoidance 51, 52, 54, 211
obstacle point 53
obstacle-avoidance constraints 70
obstacles 17, 53, 69, 95, 139, 161, 201
off-line motion-planning tool 230
OMPFC 230, 231, 233–236, 238–249
online optimization 139
online optimization problems 164
online optimization techniques 161
operating environment 211
operational space 53, 139, 183
optimal motion control 211
optimal solution 142
optimal-control scheme 212
optimality criterion 3, 4
optimization 4, 69, 95, 97, 121, 161, 164, 201, 213, 230, 251
optimization index 234
optimization techniques 121, 201, 211, 251

p
PA10 52, 162
parallel-computation ability 164
path tracking 84, 85, 107
PCI 73
PDNN 96
performance criteria 69, 121, 139, 211
performance index 122, 162
physical constraints 183
physical damage 53
physical damages 163
physical limits 121–123, 127, 136
physical ranges 74
physical safety devices 185
pivot joint 231
planar coordinate system 252
PLE 201, 230, 251, 253
pose vector 162
position error 11, 30, 81, 82, 103, 168
position-and-orientation tasks 139
position-error-orientation feedback method 233
position-level feedback information 241
potential applications 162
PPS 78, 124, 125, 133, 134, 193, 229
PR 69
primal decision variable vector 166
primal-dual 69
primal-dual decision variable vector 142
primary end-effector task 163
primary task 121, 211
protective margins 187
pseudoinverse 95, 108
pseudoinverse method 161
pseudoinverse-based method 165
pseudoinverse-type solution 49
pseudoinverse-type solutions 49
pulse signals 124, 188
pulses per second 189
PUMA560 50, 52, 66, 162
PUMA560 manipulator 184
push-rod-type joints 212

q
QP 57, 58, 66, 69, 95, 97, 121, 122, 124, 125, 128, 132, 134, 136, 184, 188, 189, 197, 201, 203–205, 209, 211, 216, 230, 231, 233, 238, 249, 253, 254, 259
QP formulation 140, 203
quadratic performance index 140, 163
quantitative measure 212

r
real-time 4, 28, 37, 85, 87, 95, 142, 230, 252, 259
reciprocating motion 231
recurrent neural networks 50, 211, 230
redundancy 3, 161
redundancy problem 161
redundancy resolution 3, 27, 49, 50, 52, 86, 121, 139, 155, 161, 162, 201, 211, 215, 230, 251, 257
redundancy-resolution equation 233
redundancy-resolution problem 49, 50, 161, 162, 211
redundancy-resolution scheme 142
redundant manipulator 49, 66, 69, 161, 162
redundant mechanical systems 139
redundant robot control 183
redundant robot manipulator 45, 81, 97, 122, 141, 183, 211, 229, 252
redundant systems 49
repetitive motion planning 140, 211
revolute joints 140
RMP 55, 56, 95, 140, 163
RNN 4, 165
robot manipulator 17, 27, 140, 177, 201, 211, 229, 255
Index

robot systems 161
robotic applications 183
robotic practitioners 163
robotics 3, 69, 95, 211, 230
robustness 214
rotary encoders 231, 246
rotary motion 231
round-off error 233

S
sampling period 83, 85, 254
sampling point 165
secondary criteria 161
secondary tasks 121, 139
self-motion 201–203, 207–209
self-motion scheme 190, 195
serial-processing techniques 50
singular point 211
singularities 161
singularity avoidance 211
singularity problem 230
six-DOF 101, 109, 229, 232–234, 249
SMP 141
specific redundancy-resolution scheme 233
specified end-effector task 139
state adjustment 121, 122, 125, 128, 134, 135
stepper motor 231
subtasks 211

T
task duration 13, 40, 78, 85, 101, 124, 133, 144, 188, 203, 214, 233
task execution 86

theoretical derivation 162
theoretical solution 123
time derivative 123
time-varying coefficient 212
time-varying obstacle avoidance 230
time-varying problem 69
torque motor 71
torque-minimizing redundancy resolution 49
traditional QP optimization routines 50, 57
transient states 194
TVCMM 212, 214, 215, 217, 226

U
unification 50
USB cable 252
user-specified Cartesian path 212
user-specified end-effector task 212

V
velocity generation 253
velocity-continuation technique 197
VJVL 69, 212
VJVL-constrained MVN scheme 75, 77

Z
ZD 4, 29, 36–38
zero-initial-velocity 203, 206, 207, 209
zero-initial-velocity constraint 191, 198
zero-initial-velocity self-motion scheme 184, 188, 196
zeroing dynamics 4, 69
ZG 18, 19
ZIV 124