Abiotic degradations of EDCs, 254–94
Additive effects, 74, 150, 153–4, 156–7
Adipogenesis, 69, 95, 129, 132, 138–9
Adrenal glands, 34, 44
Adrenal hormones, 34
Adrenocorticotropic hormone (ACTH), 34
Adverse effects, 1, 4, 6, 10–12, 14, 46, 68, 94, 99, 104, 114, 121, 134, 154–5, 181–2, 301, 304, 316, 328, 330, 333, 343, 349–50, 352, 358
AhR agonists, 133–6
Mixture effects of, 158
Alkylphenols, 54, 65, 148
Abiotic degradations of, 260–274
Biotransformations of, 205–20
Amphibian metamorphosis assay, 311
Androgens, 20, 32, 38, 41, 43–5, 91, 93, 97, 99–100, 103–4, 183, 198, 306, 310
Androgen receptor (AR), 31, 51, 91, 96, 98, 154, 308
Androgen signaling pathway, 44, 91, 94, 154
Assays for, 308
Anogenital distance (AGD), 45, 91–2, 153
Feminization (shortening) of, 45, 92–3, 95, 97, 101–2, 153–4
Anti-androgens, 45, 91–2, 96, 102, 132, 135, 148, 151–2, 154, 310
Comparative anti-androgenic effects, 103
Mixture effects of, 152–6
Anti-estrogens (see ER antagonists), 148
Antimicrobial, 1, 4, 72, 116, 274, 322
AR antagonists (see anti-androgens)
AR binding assay, 309–10
Aromatase, 31–2, 59, 69, 74, 94, 118, 128, 136–8, 151
Assay, 304, 306–7
Arsenic, 53, 77–8
Epigenetic effects, 180
Aryl hydrocarbon receptor (AhR), 7, 126, 133
Assays for detection of chemicals altering
Androgenic signaling pathway, 308
Strengths and limitations, 310
Estrogen signaling pathway, 304–8
The HPT axis, 311
Strengths and limitations, 311
Atrazine, 4, 12, 15, 126, 136–8, 332, 343
Abiotic degradation of, 281–2
Biotransformations of, 233–7
Bioaccumulation, 117, 346
Bioavailable, 359
Biotransformations of EDCs, 197–253
INDEX

Bisphenol A (BPA), 4–5, 9, 15, 53, 67–70, 73, 99, 119, 127, 149–50, 205, 324, 328, 344, 347–8, 357–8, 366
Abiotic degradation of, 260–72
Biotransformations of, 214–20
Epigenetic effects of, 19, 177–9, 183, 185–6
Bisphenol S, 71
Bisulfite modification, 175
Book layout, 19
BPA, hexafluoro- (BPAF), 63, 72–3
BPA, tetrabromo- (TBBPA), 63, 71–2, 120, 266, 366
BPA, tetrachloro- (TCBPA), 63, 71–2, 120, 266, 366
Brain development, 10, 45, 111, 121, 155
Breast cancer, 6, 9, 58, 60, 347
n-Butyl benzyl phthalate, 94–6, 153–4, 220
Biodegradation of, 222–3
Photocatalytic degradation of, 277
Cadmium, 53, 76
Epigenetic effects, 180
California department of public health, 327
Cardiovascular diseases, 6, 68, 329
Central nervous system (CNS), 41, 121, 138–9
Chemical mixtures effects, 7, 146–8, 340, 342, 349
Chemical UV filters (See sun screens)
Chlordane, 53, 97
Chlordecone, 64
Chlorination, 72, 255–6, 260, 272, 285
Chlorpyrifos, 99, 352, 365
Chromatin, 170–173, 185
Chromatin immunoprecipitation (ChIP), 175
Corticotropin-releasing hormone (CRH), 34
Cortisol, 34–5, 37
Coumestrol, 13, 57–8
Critical window of susceptibility, 10, 176, 182, 340, 342, 347
Cryptorchidism, 54, 60, 90, 92, 94, 97, 329
Cumulative exposures (see chemical mixture effects)
Cytosine –methylation of, 168, 180
Daidzein, 4, 57–9
2,2′,3,3′,4,4′,5,5′,6,6′-Decabromodiphenyl ether (BDE-209), 118
Biotransformation of, 243–4
Photo-degradation of, 282–3
Zero-valent iron debromination, 284
Delayed dysfunction, 11, 341, 343–4
Demasculinization, 14, 152
Developmental endpoints, 154, 346
Developmental (fetal) origins of adult disease, 11, 182, 343
Diabetes, 6, 68, 70, 129, 177, 329
Dibutyl phthalate (DBP), 92, 310
Biotransformations of, 221–2
Photocatalytic degradation of, 277
p,p′-Dichlorodiphenyldichloroethylene (DDE), 97
p,p′-Dichlorodiphenyltrichloroethane (DDT), 62
Dieldrin, 53, 64–5, 97
Di-(2-ethylhexyl)phthalate (DEHP), 92–6, 120–121, 127, 132–3, 310
Biotransformations of, 223–6
Epigenetic effects, 179, 186
Mixture effects of, 153, 154–5
Photocatalytic degradation of, 279
Diethylstibestrol (DES), 4, 53, 60–62
Epigenetic effects, 176
Di-n-Octyl phthalate, 96, 120, 220
Biotransformations of, 226
Dionon, 135
DNA, 166
Demethylation of, 174–5, 346
Hypermethylation of, 59, 61, 135, 178, 180, 185
Hypomethylation of, 63, 178, 180, 346
Methylation of, 61, 168–70, 173, 175–6, 179–88, 346
DNA methylation alteration, 61, 176, 179–80, 182–6
DNA methyltransferase (DNMT), 59, 169, 170, 180
Dose–response curves, 8, 9, 148, 350, 363
Embryonic stem cell (ESC), 316
Endocrine system, 1–3
Epigenetic dysregulation effects of, 176–178
Endpoints of, 7
Mechanisms of, 29
Historical perspective of, 13
Endocrine-disrupting chemicals (EDCs)/Endocrine disruptors, 3–4, 54, 60, 76, 93, 179, 183, 187, 339–40, 346, 350, 353, 357
Abiotic degradations of, 254
Biotransformations of, 197
Definitions of, 3
Deleterious effects of, 6
Green oxidative remediation of, 363
Mixture effects of, 146
Regulation of, 339, 348
Salient aspects of, 7–12
Screening and testing of, 299
Sources in the environment of, 4–5
Transgenerational adverse effects of, 12, 101, 129, 182, 185–6
Endocrine Disruptor Screening Program (EDSP), 300–301, 303, 312, 316
EDSP Tier I, 301–2, 313
EDSP Tier 2, 302
EDSP21 work plan, 312–13
Endocrine Society, 3, 15
Environmental contaminants, 1, 13, 35, 54, 114, 127, 176, 179, 195, 197, 223, 254, 282, 321, 326, 364
Epidemiological study, 70, 104, 121, 132, 181, 342
Epigenetic modification, 168–74, 177
Assays for, 175
Transgenerational inheritance, 181–6
Epigenome, 166–8, 170, 174, 176–7, 181–3, 186–7, 346
Epigenotoxic, 346
17β Estradiol (E2), 32, 41–3, 52, 55, 254
Abiotic degradation of, 256–60
Biotransformation of, 199–201
Mixture effects of, 149, 151
Estrogens,
Metallo-, 75
Mixture effects, 148
Myco-, 60
Non-steroidal, 60
Phyto-, 57
Steroidal, 41, 54
Estrogen receptors (ERs), 19, 31, 42–3
ER antagonist (see anti-estrogens)
Estrogen signaling pathway, 44, 51
Assays for, 304–8
Estrogenicity, 62, 76, 148–50, 212, 260, 263, 365
17α Ethynylestradiol (EE2), 54, 55–6, 78, 254, 365
Abiotic degradation of, 260
Biotransformations of, 202–5
Green catalytic oxidation of, 365
Mixture effects of, 149–52
Feminization, 52, 54, 56, 62, 66, 92, 102, 137, 151
Fenitrothion, 98, 103, 365
Green catalytic oxidation of, 366
Fenthion, 98
Fenton reaction, 255, 260, 270–271, 281, 289
Fertilization, 6, 55, 170, 181
Flame-retardants, 1, 72, 92, 99, 117, 119, 282, 322
Flutamide, 45, 92, 96, 98, 101, 103
Mixture effects of, 153–4
Follicle-stimulating hormone (FSH), 30–31, 51
Food Quality Protection Act (FQPA), 14, 300–301
Formononetin, 57–8
Fulvestrant (ICI 182, 780), 74, 76–7
Gametogenesis, 31
Genistein, 4, 57, 59
Genomic signaling, 36, 54
Glucocorticoids, 34, 38
Cortisol, 34–5
Corticosterone, 34
Receptor (GR), 69
Glucuronidation, 33, 117, 205
Glycine, 57, 59
Gonadal hormones, 38
Gonadotropins (LH and FSH), 31
Gonadotropin-releasing hormone (GnRH), 31, 51
Gonads (ovary or testis), 30–31
Gonadotropes, 31
G-protein coupled receptors (GPCRs), 36, 38, 69
Granulosa (ovary) cell, 31
Green oxidative remediation, 363
Hazard, 62, 148, 300–301, 342, 344, 348, 349–51, 353, 357–8, 366
Heavy metals, 4, 53, 76, 179
Hershberger assay, 98–100, 102–3, 309–10
Histones, 171–3
Acetylation, 172, 180
Methylation, 173, 180
Methyltransferase, 184
Modifications of, 173, 180, 185, 187
Homeostasis, 3, 6, 29–31, 35, 37, 41–2, 45, 51, 111, 117–18, 120–121, 127, 130, 138–9, 157, 199, 349
Hormone action, 3, 9, 20, 35, 41, 71, 312, 363
Hormonal axes, 29–35
Hormonal cell signaling, 35–9
HPTE, 59, 64, 72–3
Human breast cancer cell (MCF-7), 73–4, 76, 94, 117, 149
4-Hydroxy-tamoxifen, 69
Hyperglycemia, 34
Hypothyroidism, 45–6, 112
Hypospadias, 54, 91–4, 97, 102, 154–5, 329
Hypothalamus, 2, 29, 31, 33–4, 51
Hypothalamic-pituitary-adrenal (HPA) axis, 34
Hypothalamic-pituitary-gonadal (HPG) axis, 31
Hypothalamic-pituitary-thyroid (HPT) axis, 33
Intersex, 6, 15, 54, 56, 128

INDEX
<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>In utero exposure impacts</td>
<td>61, 93–4, 120, 129, 131, 133, 153–4, 161, 174, 176–7, 179, 182, 185, 311, 348</td>
</tr>
<tr>
<td>In vitro assays</td>
<td>76, 299, 300, 304, 313, 315–16</td>
</tr>
<tr>
<td>In vivo assays</td>
<td>299–301, 308, 311</td>
</tr>
<tr>
<td>Landfill leachate</td>
<td>6, 254, 322</td>
</tr>
<tr>
<td>Latency (delayed effect)</td>
<td>11, 343</td>
</tr>
<tr>
<td>Epigenetic effects</td>
<td>181</td>
</tr>
<tr>
<td>Letrozole</td>
<td>151</td>
</tr>
<tr>
<td>Leydig (testis) cell</td>
<td>31, 44, 64, 91, 93, 95, 99, 102, 104</td>
</tr>
<tr>
<td>Linuron</td>
<td>92, 103, 135</td>
</tr>
<tr>
<td>Abiotic degradations of</td>
<td>279–81</td>
</tr>
<tr>
<td>Additive effects of</td>
<td>154</td>
</tr>
<tr>
<td>Biotransformations of</td>
<td>232–3</td>
</tr>
<tr>
<td>Low-dose effects</td>
<td>8, 61, 131–2, 314, 328, 341, 351, 358, 361</td>
</tr>
<tr>
<td>Lupron</td>
<td>8</td>
</tr>
<tr>
<td>Luteinizing hormone (LH)</td>
<td>30, 51, 102, 152</td>
</tr>
<tr>
<td>Male reproductive tract malformations</td>
<td>6, 93, 104, 152–5, 329</td>
</tr>
<tr>
<td>Membrane receptors</td>
<td>35, 38, 60, 151</td>
</tr>
<tr>
<td>Mercury</td>
<td>76–7, 341</td>
</tr>
<tr>
<td>Metabolism</td>
<td>1, 3, 7, 10, 32, 34, 41–2, 44–5, 62, 65, 70, 73, 78, 92, 100, 111, 113, 116, 119, 127, 130, 133, 135, 139, 148, 197, 198, 206, 212, 213, 221, 224, 226, 228, 233, 236, 299, 311, 315, 362</td>
</tr>
<tr>
<td>Metabolic pathways</td>
<td>199, 202, 205, 212, 214, 223, 228, 231–2, 245, 339</td>
</tr>
<tr>
<td>Metalloestrogens</td>
<td>75–6</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>53, 59, 64, 97, 301, 353</td>
</tr>
<tr>
<td>Biotransformations of</td>
<td>226–8</td>
</tr>
<tr>
<td>Epigenetic effects</td>
<td>177, 183, 185</td>
</tr>
<tr>
<td>Mixture effects of</td>
<td>150</td>
</tr>
<tr>
<td>4-Methylbenzylidine camphor (4-MBC)</td>
<td>75</td>
</tr>
<tr>
<td>Micropollutants (see trace contaminants)</td>
<td>75</td>
</tr>
<tr>
<td>Mineralocorticoids</td>
<td>34</td>
</tr>
<tr>
<td>Mycoestrogen</td>
<td>4, 60</td>
</tr>
<tr>
<td>National Toxicology Program (NTP)</td>
<td>15, 59, 70, 93</td>
</tr>
<tr>
<td>Nickel</td>
<td>180</td>
</tr>
<tr>
<td>Nipple retention (NR)</td>
<td>91, 93, 97, 101–2, 153</td>
</tr>
<tr>
<td>Noncoding RNAs (ncRNAs)</td>
<td>173–4</td>
</tr>
<tr>
<td>Nongenomic (rapid) signaling</td>
<td>35, 38–9, 42, 45–6, 54, 69</td>
</tr>
<tr>
<td>Nonmonotonic dose–response</td>
<td>8, 53, 137, 341, 363</td>
</tr>
<tr>
<td>4-n-Nonylphenol</td>
<td>66</td>
</tr>
<tr>
<td>Biotransformations of</td>
<td>205</td>
</tr>
<tr>
<td>4-tert-Nonylphenols</td>
<td>66</td>
</tr>
<tr>
<td>Biotransformations of</td>
<td>208–12</td>
</tr>
<tr>
<td>Nuclear hormone receptors (NRs)</td>
<td>31, 35, 69, 78, 93, 127, 133, 138–9, 315, 341</td>
</tr>
<tr>
<td>Obesogen</td>
<td>132, 139</td>
</tr>
<tr>
<td>Obesity</td>
<td>6, 59, 61–2, 69–70, 127, 129, 132, 138–9, 177, 186</td>
</tr>
<tr>
<td>Octyl-methoxycinnamate (OMC)</td>
<td>75</td>
</tr>
<tr>
<td>4-tert-Octylphenol</td>
<td>67</td>
</tr>
<tr>
<td>Biotransformations of</td>
<td>212</td>
</tr>
<tr>
<td>Mixture effect of</td>
<td>149</td>
</tr>
<tr>
<td>Photocatalytic degradation of</td>
<td>274</td>
</tr>
<tr>
<td>OECD, 300, 310</td>
<td></td>
</tr>
<tr>
<td>Conceptual framework for EDC toxicity</td>
<td>300</td>
</tr>
<tr>
<td>Organochlorine (OC) pesticides</td>
<td>4, 14, 53, 62, 92, 96–7, 150</td>
</tr>
<tr>
<td>Oxidation with KMnO₄</td>
<td>258, 266, 285</td>
</tr>
<tr>
<td>Oxybenzone</td>
<td>75</td>
</tr>
<tr>
<td>Ozonation</td>
<td>258, 260, 269, 274, 276, 279, 282, 287</td>
</tr>
<tr>
<td>Parabens (Hydroxy benzoates)</td>
<td>72–4, 154</td>
</tr>
<tr>
<td>Abiotic degradation of</td>
<td>274–6</td>
</tr>
<tr>
<td>Mixture effects of</td>
<td>154</td>
</tr>
<tr>
<td>2,2′,4,4′,5-Pentabromo diphenylether (BDE-99), 99</td>
<td></td>
</tr>
<tr>
<td>Biotransformation of</td>
<td>243–4</td>
</tr>
<tr>
<td>2,2′,4,4′,6-pentabromo diphenyl ether (BDE-100), 99</td>
<td></td>
</tr>
<tr>
<td>Perchlorate</td>
<td>113</td>
</tr>
<tr>
<td>Perfluoroctane sulfonate (PFOS)</td>
<td>120, 130, 132</td>
</tr>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>130–131</td>
</tr>
<tr>
<td>Abiotic degradation of</td>
<td>288–9</td>
</tr>
<tr>
<td>Perinatal exposure</td>
<td>54, 101, 102</td>
</tr>
<tr>
<td>Peroxisome proliferator-activated receptor</td>
<td>(PPAR), 126, 127–8</td>
</tr>
<tr>
<td>Photocatalytic degradation of</td>
<td>256, 259, 272, 274, 276–9, 282, 284, 289</td>
</tr>
<tr>
<td>Photochemical transformation</td>
<td>274, 279, 281–2, 287</td>
</tr>
<tr>
<td>Phthalates</td>
<td>4, 92–6, 103, 120–121, 132–3, 310–11, 360</td>
</tr>
<tr>
<td>Biotransformations of</td>
<td>220–226</td>
</tr>
<tr>
<td>Mixture effects of</td>
<td>153–4, 161</td>
</tr>
<tr>
<td>Photocatalytic degradation of</td>
<td>276–9</td>
</tr>
<tr>
<td>Phthalate syndrome</td>
<td>93</td>
</tr>
<tr>
<td>Plasma membrane receptors</td>
<td>35–6</td>
</tr>
<tr>
<td>Plasticizers</td>
<td>1, 4, 15, 53, 92–3, 132, 254, 322, 328, 358</td>
</tr>
</tbody>
</table>
Physiologic estrogens, 41, 52, 54
Phytoestrogens, 4, 52, 57–9, 76, 149
Polybrominated diphenyldioxins (PBDEs), 99, 117–19
Biotransformations of, 238–44
Photodegradations of, 282–4
Zero-valent iron debromination of, 284
Policy options for EDC regulation, 344–6
Polychlorinated biphenyls (PCBs), 65, 114, 135, 157, 312, 352
Biotransformations of, 236–7
Polychlorinated dibenzodioxins (PCDDs), 133, 157
Polychlorinated dibenzofurans (PCDFs), 133, 157
PPAR Agonists, 127
Organotin antifoulants, 128
Perfluoroalkyl compounds (PFCs), 130
Phthalates, 132
Precautionary, 158, 343, 348, 363
Policy, 344
Principle, 188, 344, 348, 351
Preputial separation, 310
Prochloraz, 92, 102
Biotransformations of, 232–3
Mixture effects of, 154–6
Procyomidine, 101
Propanil, 135
Prostate, 9, 42–4, 93, 100–102, 153, 155, 184, 186, 309
Prostate cancer, 9, 44, 59, 76, 98, 104, 178–9, 339
Pseudo-hermaphroditism, 32
Pubertal development, altered, 6, 45, 52–3, 64, 75, 76–7, 100, 119, 131, 179, 186, 339
Pubertal male rat assay, 310
Puberty, 10–11, 31, 41, 43, 76, 176, 308, 340, 347
Rapid-response pathway (see nongenomic signaling)
Receptors agonists, 40
Receptor antagonists, 40
Regulatory epigenetic modifications, 168
Reproductive development anomalies, 15, 92, 97, 104, 154, 157, 310
Reproductive organ weights, 75, 153, 310
Reproductive tract malformation, 6, 93, 102, 104, 152, 154–5, 311, 329
Retinoid receptors (RAR/RXR), 7, 35, 46, 127–9
Risk assessment, 8, 95, 155, 161, 198, 340, 344, 346, 349–50, 351, 363
Concern-based, 352
Hazard-based, 348, 350, 351
Rosiglitazone, 95, 129
Safe chemicals, 358
Benign by design, 358
Burden of proving, 329, 340, 345
Tiered protocol for endocrine disruption, 361
Safe threshold, 341
Scientific uncertainty, 19, 344, 348
Screening and testing for EDCs, 299
Selective ER modulators (SERMs), 41
Sertoli cell, 31, 45, 93
Sexual differentiation, 10, 29, 32, 93, 95, 97, 104, 116, 136, 153, 155
Sperm count, 6, 15, 44, 52, 54, 60, 92, 101, 104, 134, 185
Spermatogenesis, 44, 51, 74, 94, 99
Steroidal estrogens, 41, 54–5, 148, 199
Steroid receptors (ER/AR), 7, 35
Steroidogenic factor 1 (SF1, NR5A1), 126
Steroidogenesis, 31, 51, 102, 119, 126, 136, 301
assay, 306–7, 309
modulator, 136
Soy, 57–60
Sulfonation, 33, 114, 116–17, 243
Sun screens (Chemical UV filters), 74
Syngenta, 332
Tamoxifen, 8, 9, 69, 151
Testes, 2, 29, 31, 44, 54, 66, 91, 93, 101, 179, 184–5, 309
Testicular cancer, 6, 53–4, 92, 104, 329, 339, 343
Testicular dysgenesis syndrome (TDS), 94
Testosterone (T), 7–10, 14, 31–2, 37, 44–5, 74, 117, 128, 138, 153, 186, 306, 310
Testosterone, 5α-dihydro (DHT), 44, 93, 309
Testosterone synthesis inhibitors, 92–5
2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), 99, 118–19
Biotransformations of, 238–43
2,3,7,8-Tetrachlorodibenz-α-dioxin (TCDD), 13, 126, 134–5, 157, 158
Epigenetic effects, 185
Thyroid disrupting chemicals (TDCs), 111
Thyroid hormone (TH) synthesis inhibitors, 113
TH Transport inhibitors, 114
TH level disruptors, 117
TH antagonists, 119
Mixture effects of, 157
Thyroid hormones (THs), 31, 45–6
Thyrotropin-releasing hormone (TRH), 33
INDEX

Thyroxine (T4), 45
Tiered protocol for endocrine disruption (TiPED), 361–63
Tox 21 HTS program, 314–15
ToxCast program, 69, 313–14
Toxic Substances Control Act (TSCA), 96
Toxicology, traditional, 8–9, 20,183, 301, 313–314, 330, 332, 340, 348–50, 352, 358, 361
Trace contaminants, 320
Health effects of, 328
Regulatory structures of, 330
Removal of, 326–7, 364
Sources in water of, 321–3
Water quality, 254, 320, 322, 327, 330, 333
Trace contaminants in water, 321
Leaching of, 327
Sources of, 322
Treatment train of, 323–6
Transcriptional silencing, 168
Transgenerational epigenetic effects, 7, 12,15, 61, 64, 101, 129, 170, 177, 181–8
Tributyl tin (TBT), 128–9
Triclosan, 116–17, 324
Abiotic degradation of, 284–8
Biotransformations of, 245
Triiodothyronine (T3), 33, 45–46, 75, 112, 116, 119, 120–121
Triphenyl tin (TPT), 126, 128
US Environmental Protection Agency (EPA), 3, 8, 14, 19, 67, 68–70, 95–6, 112, 130, 132, 137, 298–301, 310–311, 313–14, 325, 328–9, 343, 350, 357–8, 361
US Food and Drugs Administration (FDA), 13, 58, 70, 327, 348
Uterotrophic assay, 72, 74, 117, 149, 159, 307, 310
Vinclozolin, 12, 92, 100–101, 353
Biotransformations of, 228–31
Epigenetic effects of, 12, 177, 183–5, 353
Mixture effects of, 153–5, 157
Vitellogenin (VTG), 54, 56, 66–7, 149, 308
Vitellogenesis, 54, 150
Wastewater treatment plant (WWTP) effluent, 5–6, 56, 66, 151, 202, 245, 254–5, 322–3, 326
Wastewater reclamation processes, 323
Biological processes, 324
Physical methods, 324
Redox processes, 325
Sedimentation/coagulation, 323
Water–bottled, leaching of contaminants, 327
Water reuse systems, 326
Xenobiotics, 46, 111, 114, 116, 126, 133, 198, 254
Xenoestrogens, 52–3, 60, 76, 179, 341, 347
Yeast estrogen screen (YES), 55, 103, 148, 159, 208, 260, 305
Zearalenone, 4, 60
Zero-valent aluminum, 267
Zero-valent iron, 267, 282, 284
ZM189154, 151
Zygote, 166