CONTENTS

LIST OF FIGURES xiii

LIST OF TABLES xv

FOREWORD xvii

ACKNOWLEDGMENTS xxi

GLOSSARY xxiii

1 INTRODUCTION 1

1.1 Objectives 1

1.2 Motivation for this Book 1

1.2.1 A Brief History of Fire Protection 2

1.2.2 The Development of Risk-Based Approaches to Flammables Management 3

1.2.3 Difficulties in Developing Ignition Probability Prediction Methods 4

1.2.4 Missing Variables 5

1.2.5 Summary of Industry Needs and Path Forward 5

1.2.6 Applications for This Book 6

1.2.7 Limitations in Applying the Approaches in This Book 7

1.3 Ignition Probability Overview 8

1.3.1 Theoretical Basis for Ignition 8
1.3.2 Key Ignition Factors Related to the Properties of the Fuel and Available Surrogates That Can Be Used for Developing Probability of Ignition Predictions 13
1.3.3 Key Ignition Factors Related to the Release Source 19
1.3.4 Key Ignition Factors Related to the External Environment After the Release 27
1.4 Control of Ignition Sources 31
1.4.1 Ignition Source Management 31
1.4.2 Minimization of Release 33
1.5 Vapor Cloud Explosion Probability Overview 34
1.6 Detonation Overview 35
1.6.1 Detonation Using a Strong Ignition Source 35
1.6.2 Deflagration-to-Detonation Transition 35
1.6.3 Buncefield 36
1.7 Other Ignition Topics—Hydrogen 36
1.7.1 Ignition Mechanisms 36
1.7.2 Other Hydrogen Ignition Topics 37

2 ESTIMATION METHODS 40
2.1 Introduction 40
2.1.1 Event Tree 40
2.1.2 Failure Frequency Data for Use in Event Trees 42
2.1.3 Quantification of the Event Tree 42
2.2 Factors Influencing the Probability of Immediate Ignition 42
2.2.1 Temperature of Release Relative to the Autoignition Temperature 43
2.2.2 Minimum Ignition Energy (MIE) of Material Being Released 43
2.2.3 Pyrophoricity of Released Material 45
2.2.4 Pressure/Velocity of Discharge 45
2.2.5 Droplet Size 46
2.2.6 Presence of Particulates 47
2.2.7 Configuration/Orientation of Equipment Near/At the Point of Release 47
2.2.8 Temperature of Release (As It Relates to Its Effect on MIE) 47
2.2.9 Phase of Release (API RBI) 48
2.2.10 Flash Point and Release Rate (TNQ) 48
2.3 Factors Influencing the Probability of Delayed Ignition 48
2.3.1 Strength and Numbers of Ignition Sources 48
2.3.2 Duration of Exposure 52
2.3.3 Release Rate/Amount 52
2.3.4 Material Being Released 54
2.3.5 Release Phase/Flash Point/Boiling Point 54
2.3.6 Distance from Point of Release to Ignition Source 55
2.3.7 Meteorology 55
2.3.8 Events Originating Indoors 55
2.4 Factors Influencing the Probability of Explosion, Given Delayed Ignition 57
2.5 Potential Interdependence of Variables 58
2.6 Summary of Variables Used in Each Analysis Level 59
2.7 Basic (Level 1) Probability of Ignition Algorithms 60
2.7.1 Level 1 Algorithm for Probability of Immediate Ignition 60
2.7.2 Level 1 Algorithm for Probability of Delayed Ignition 61
2.8 Level 2 Probability of Ignition Algorithms 62
2.8.1 Level 2 Algorithm for Probability of Immediate Ignition 62
2.8.2 Level 2 Algorithm for Probability of Delayed Ignition 63
2.9 Advanced (Level 3) Probability of Ignition Algorithms 67
2.9.1 Level 3 Algorithm for Probability of Immediate Ignition 67
2.9.2 Level 3 Algorithm for Probability of Delayed Ignition 68
2.10 Developing Inputs When Chemical Properties Are Not Available 70
2.10.1 Estimating Input Properties of Chemicals Not in the Pick List 70
2.10.2 Estimating the Properties of Flammable Mixtures 72
2.11 Worked Example 74
2.11.1 Problem Statement 74
2.11.2 Level 1 Analysis 74
2.11.3 Level 2 Analysis 75
2.11.4 Level 3 Analysis 76
2.12 Application of the Models to a Study with Multiple Ignition Sources 77

3 TECHNICAL BACKGROUND AND DATA SOURCES 80

3.1 Introduction and Summary 80
3.2 Government-driven studies 85
3.2.1 Rew et al. 85
3.2.2 Bevi Risk Assessment Manual (TNO Purple Book) 94
3.2.3 HSE/Crossthwaite et al. 98
3.2.4 HSE/Thyer 98
3.2.5 HSE/Gummer and Hawksworth—Hydrogen 100
GUIDELINES FOR DETERMINING THE PROBABILITY OF IGNITION

3.2.6 Cawley/U.S. Bureau of Mines 101
3.2.7 Canvey 102
3.2.8 Witcofski (NASA) Liquid Hydrogen 103

3.3 Information Developed by Industry Groups 103
3.3.1 Cox/Lees/Ang 103
3.3.2 E&P Forum 106
3.3.3 API RBI 106
3.3.4 API RP 2216 111
3.3.5 IEEE 112
3.3.6 UK Energy Institute 113

3.4 Information Developed in Academia 116
3.4.1 Ronza et al. 116
3.4.2 Offshore Explosions (Loughborough) 119
3.4.3 Srekli and Golob 119
3.4.4 Duarte et al. 120
3.4.5 Swain—Ignition of Hydrogen 121
3.4.6 Dryer et al.—Hydrogen and Light Hydrocarbons 121
3.4.7 Britton—Silanes and Chlorosilanes 122
3.4.8 Pesce et al. 123

3.5 Information Developed by Individual Companies 124
3.5.1 Spouge 124
3.5.2 Moosemiller 125
3.5.3 Johnson—Humans as Electrostatic Ignition Sources 126
3.5.4 Jallsis—Hydrogen 128
3.5.5 Zalosh—Hydrogen 128
3.5.6 Smith—Pipelines 130

3.6 Studies Specific to Ignition of Sprays 131
3.6.1 Lee et al. 131
3.6.2 Babrauskas 133

3.7 Case Histories 134
3.7.1 Britton—External Ignition Events 134
3.7.2 Pratt—Gas Well and Pipeline Blowouts 135
3.7.3 Gummer and Hawksworth—Hydrogen Events 136

4 ADDITIONAL EXAMPLES 140

4.1 Introduction to Examples and Potential “Lessons Learned” 140
4.1.1 “Reality” vs. Predictions 140
4.1.2 “Conservatism”—Does It Exist? 141
4.1.3 Cases Where the Model May Not Be Appropriate or the Results Misinterpreted 142
4.1.4 Summary of Worked Examples 143
4.2 Worked Examples (based on other CCPS books) 144
4.2.1 Vapor Cloud Explosion Hazard Assessment of a Storage Site 144
4.2.2 Open Field Release of Propane 149
4.2.3 Release from Pipeline 153
4.3 Worked Examples (Chemical and Petrochemical Plants) 156
4.3.1 Ethylene Tubing Failure 156
4.3.2 Benzene Pipe Rupture 158
4.3.3 Spill from Methyl Ethyl Ketone Tank 159
4.3.4 Indoor Puncture of MEK Tote 163
4.3.5 Elevated Release 166
4.4 Worked Examples (oil refineries) 169
4.4.1 Gasoline Release from a Sight Glass 169
4.4.2 Overfilling a Gasoline Storage Tank 173
4.4.3 Overfilling a Propane Bullet 175
4.4.4 Hydrogen Release from a Sight Glass 177
4.5 Worked Examples (Unusual Cases) 179
4.5.1 Indoor Acid Spill—Ventilation Model 179
4.5.2 Release of Ammonia 184
4.6 Worked Examples ("Out of Scope" Cases) 185
4.6.1 Release of Gas from an Offshore Platform Separator 185
4.6.2 Dust Ignition 189
4.7 Worked Examples of the Benefits of Plant Modifications and Design Changes 193
4.7.1 Ignition by Hot Surfaces 193
4.7.2 Release Prevention 196
4.7.3 Duration of Exposure 196
4.7.4 Benefit of Improved Ventilation of Indoor Releases—Continuation of "Indoor Acid Spill" Example 198

5 SOFTWARE ILLUSTRATION 200

5.1 Explanation and Instructions for Software Tool 200
5.2 Opening the Software Tool 200
5.3 General Inputs and Outputs 201
5.4 Level 1 Inputs 203
5.5 Level 2 Analyses 205
5.6 Level 3 Analyses 207