CONTENTS

Preface
Acknowledgments

1 Overview of Embedded System
 1.1 Introduction
 1.1.1 Definition of an embedded system
 1.1.2 Example systems
 1.2 System design requirements
 1.3 Embedded SoPC systems
 1.3.1 Basic development flow
 1.4 Book organization
 1.5 Bibliographic notes

PART I BASIC DIGITAL CIRCUITS DEVELOPMENT

2 Gate-level Combinational Circuit
 2.1 Introduction
 2.2 General description
 2.3 Basic lexical elements and data types
 2.3.1 Lexical elements
 2.4 Data types
CONTENTS

2.4.1 Four-value system
2.4.2 Data type groups
2.4.3 Number representation
2.4.4 Operators

2.5 Program skeleton
2.5.1 Port declaration
2.5.2 Program body
2.5.3 Signal declaration
2.5.4 Another example

2.6 Structural description

2.7 Testbench

2.8 Bibliographic notes

2.9 Suggested experiments
2.9.1 Code for gate-level greater-than circuit
2.9.2 Code for gate-level binary decoder

3 Overview of FPGA and EDA Software

3.1 FPGA
3.1.1 Overview of a general FPGA device
3.1.2 Overview of the Altera Cyclone II devices

3.2 Overview of the Altera DE1 and DE2 boards

3.3 Development flow

3.4 Overview of Quartus II

3.5 Short tutorial of Quartus II
3.5.1 Create the design project
3.5.2 Create a testbench and perform the RTL simulation
3.5.3 Compile the project
3.5.4 Perform timing analysis
3.5.5 Program the FPGA device

3.6 Short tutorial on the ModelSim HDL simulator

3.7 Bibliographic notes

3.8 Suggested experiments
3.8.1 Gate-level greater-than circuit
3.8.2 Gate-level binary decoder

4 RT-level Combinational Circuit

4.1 Operators
4.1.1 Arithmetic operators
4.1.2 Shift operators
4.1.3 Relational and equality operators
4.1.4 Bitwise, reduction, and logical operators

4.1.5 Concatenation and replication operators 57
4.1.6 Conditional operators 58
4.1.7 Operator precedence 59
4.1.8 Expression bit-length adjustment 59
4.1.9 Synthesis of z and x values 60

4.2 Always block for a combinational circuit 62
 4.2.1 Basic syntax and behavior 62
 4.2.2 Procedural assignment 63
 4.2.3 Variable data types 63
 4.2.4 Simple examples 64

4.3 If statement 65
 4.3.1 Syntax 65
 4.3.2 Examples 66

4.4 Case statement 68
 4.4.1 Syntax 68
 4.4.2 Examples 69
 4.4.3 The casez and casex statements 69
 4.4.4 Full case and parallel case 70

4.5 Routing structure of conditional control constructs 71
 4.5.1 Priority routing network 71
 4.5.2 Multiplexing network 73

4.6 General coding guidelines for an always block 74
 4.6.1 Common errors in combinational circuit codes 74
 4.6.2 Guidelines 77

4.7 Parameter and constant 78
 4.7.1 Constant 78
 4.7.2 Parameter 79
 4.7.3 Use of parameters in Verilog-1995 81

4.8 Design examples 81
 4.8.1 Hexadecimal digit to seven-segment LED decoder 81
 4.8.2 Sign-magnitude adder 83
 4.8.3 Barrel shifter 85
 4.8.4 Simplified floating-point adder 87

4.9 Bibliographic notes 90

4.10 Suggested experiments 91
 4.10.1 Multifunction barrel shifter 91
 4.10.2 Dual-priority encoder 91
 4.10.3 BCD incrementor 91
 4.10.4 Floating-point greater-than circuit 92
 4.10.5 Floating-point and signed integer conversion circuit 92
 4.10.6 Enhanced floating-point adder 92
5 Regular Sequential Circuit

5.1 Introduction
 5.1.1 D FF and register
 5.1.2 Synchronous system
 5.1.3 Code development

5.2 HDL code of the FF and register
 5.2.1 D FF
 5.2.2 Register
 5.2.3 Register file
 5.2.4 SRAM

5.3 Simple design examples
 5.3.1 Shift register
 5.3.2 Binary counter and variant

5.4 Testbench for sequential circuits

5.5 Timing analysis
 5.5.1 Timing parameters
 5.5.2 Timing considerations in Quartus II

5.6 Case study
 5.6.1 Stopwatch
 5.6.2 FIFO buffer

5.7 Cyclone II device embedded memory module
 5.7.1 Overview of memory options of DE1 board
 5.7.2 Overview of embedded M4K module
 5.7.3 Methods to incorporate embedded memory module
 5.7.4 HDL module to infer synchronous single-port RAM
 5.7.5 HDL module to infer synchronous simple dual-port RAM
 5.7.6 HDL module to infer synchronous true dual-port RAM
 5.7.7 HDL module to infer synchronous ROM
 5.7.8 HDL module to specify RAM initial values
 5.7.9 FIFO buffer revisited

5.8 Bibliographic notes

5.9 Suggested experiments
 5.9.1 Programmable square-wave generator
 5.9.2 Pulse width modulation circuit
 5.9.3 Rotating square circuit
 5.9.4 Heartbeat circuit
 5.9.5 Rotating LED banner circuit
 5.9.6 Enhanced stopwatch
 5.9.7 FIFO with data width conversion
 5.9.8 Stack
 5.9.9 ROM-based sign-magnitude adder
 5.9.10 ROM-based temperature conversion
6 FSM

<table>
<thead>
<tr>
<th>6.1 Introduction</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1 Mealy and Moore outputs</td>
<td>138</td>
</tr>
<tr>
<td>6.1.2 FSM representation</td>
<td>138</td>
</tr>
<tr>
<td>6.2 FSM code development</td>
<td>140</td>
</tr>
<tr>
<td>6.3 Design examples</td>
<td>143</td>
</tr>
<tr>
<td>6.3.1 Rising-edge detector</td>
<td>143</td>
</tr>
<tr>
<td>6.3.2 Debouncing circuit</td>
<td>147</td>
</tr>
<tr>
<td>6.3.3 Testing circuit</td>
<td>151</td>
</tr>
<tr>
<td>6.4 Bibliographic notes</td>
<td>153</td>
</tr>
<tr>
<td>6.5 Suggested experiments</td>
<td>153</td>
</tr>
<tr>
<td>6.5.1 Dual-edge detector</td>
<td>153</td>
</tr>
<tr>
<td>6.5.2 Alternative debouncing circuit</td>
<td>153</td>
</tr>
<tr>
<td>6.5.3 Parking lot occupancy counter</td>
<td>153</td>
</tr>
</tbody>
</table>

7 FSMD

<table>
<thead>
<tr>
<th>7.1 Introduction</th>
<th>155</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1 Single RT operation</td>
<td>156</td>
</tr>
<tr>
<td>7.1.2 ASMD chart</td>
<td>156</td>
</tr>
<tr>
<td>7.1.3 Decision box with a register</td>
<td>158</td>
</tr>
<tr>
<td>7.2 Code development of an FSMD</td>
<td>161</td>
</tr>
<tr>
<td>7.2.1 Debouncing circuit based on RT methodology</td>
<td>161</td>
</tr>
<tr>
<td>7.2.2 Code with explicit data path components</td>
<td>161</td>
</tr>
<tr>
<td>7.2.3 Code with implicit data path components</td>
<td>164</td>
</tr>
<tr>
<td>7.2.4 Comparison</td>
<td>166</td>
</tr>
<tr>
<td>7.3 Design examples</td>
<td>168</td>
</tr>
<tr>
<td>7.3.1 Fibonacci number circuit</td>
<td>168</td>
</tr>
<tr>
<td>7.3.2 Division circuit</td>
<td>171</td>
</tr>
<tr>
<td>7.3.3 Binary-to-BCD conversion circuit</td>
<td>175</td>
</tr>
<tr>
<td>7.3.4 Period counter</td>
<td>178</td>
</tr>
<tr>
<td>7.3.5 Accurate low-frequency counter</td>
<td>181</td>
</tr>
<tr>
<td>7.4 Bibliographic notes</td>
<td>184</td>
</tr>
<tr>
<td>7.5 Suggested experiments</td>
<td>184</td>
</tr>
<tr>
<td>7.5.1 Alternative debouncing circuit</td>
<td>184</td>
</tr>
<tr>
<td>7.5.2 BCD-to-binary conversion circuit</td>
<td>184</td>
</tr>
<tr>
<td>7.5.3 Fibonacci circuit with BCD I/O: design approach 1</td>
<td>185</td>
</tr>
<tr>
<td>7.5.4 Fibonacci circuit with BCD I/O: design approach 2</td>
<td>185</td>
</tr>
<tr>
<td>7.5.5 Auto-scaled low-frequency counter</td>
<td>186</td>
</tr>
<tr>
<td>7.5.6 Reaction timer</td>
<td>186</td>
</tr>
<tr>
<td>7.5.7 Babbage difference engine emulation circuit</td>
<td>187</td>
</tr>
</tbody>
</table>
8 Selected Topics of Verilog

8.1 Blocking versus nonblocking assignment 189
 8.1.1 Overview 189
 8.1.2 Combinational circuit 191
 8.1.3 Memory element 193
 8.1.4 Sequential circuit with mixed blocking and nonblocking assignments 194

8.2 Alternative coding style for sequential circuit 196
 8.2.1 Binary counter 196
 8.2.2 FSM 198
 8.2.3 FSMD 199
 8.2.4 Summary 201

8.3 Use of the signed data type 201
 8.3.1 Overview 201
 8.3.2 Signed number in Verilog-1995 203
 8.3.3 Signed number in Verilog-2001 203

8.4 Use of function in synthesis 204
 8.4.1 Overview 204
 8.4.2 Examples 205

8.5 Additional constructs for testbench development 207
 8.5.1 Always block and initial block 207
 8.5.2 Procedural statements 207
 8.5.3 Timing control 209
 8.5.4 Delay control 209
 8.5.5 Event control 210
 8.5.6 Wait statement 211
 8.5.7 Timescale directive 211
 8.5.8 System functions and tasks 212
 8.5.9 User-defined functions and tasks 216
 8.5.10 Example of a comprehensive testbench 217

8.6 Bibliographic notes 223

8.7 Suggested experiments 223
 8.7.1 Shift register with blocking and nonblocking assignments 223
 8.7.2 Alternative coding style for BCD counter 224
 8.7.3 Alternative coding style for FIFO buffer 224
 8.7.4 Alternative coding style for Fibonacci circuit 224
 8.7.5 Dual-mode comparator 224
 8.7.6 Enhanced binary counter monitor 224
 8.7.7 Testbench for FIFO buffer 225

PART II BASIC NIOS II SOFTWARE DEVELOPMENT
9 Nios II Processor Overview

9.1 Introduction 229
9.2 Register file and ALU 231
 9.2.1 Register file 231
 9.2.2 ALU 231
9.3 Memory and I/O organization 232
 9.3.1 Nios II memory interface 232
 9.3.2 Overview of memory hierarchy 232
 9.3.3 Virtual memory 232
 9.3.4 Memory protection 233
 9.3.5 Cache memory 233
 9.3.6 Tightly coupled memory 234
 9.3.7 I/O organization 234
 9.3.8 Interconnect structure 235
9.4 Exception and interrupt handler 235
9.5 JTAG debug module 235
9.6 Bibliographic notes 235
9.7 Suggested projects 236
 9.7.1 Comparison of Nios II and MIPS 236

10 Nios II System Derivation and Low-Level Access

10.1 Development flow revisited 237
 10.1.1 Hardware development 237
 10.1.2 Software development 239
 10.1.3 Flashing-LED system 239
10.2 Nios II hardware generation tutorial 240
 10.2.1 Create a hardware project in Quartus II 240
 10.2.2 Create a Nios II system and generate HDL codes 240
 10.2.3 Create a top-level HDL file that instantiates the Nios II system 246
 10.2.4 Compiling and programming 247
10.3 Nios II SBT GUI tutorial 248
 10.3.1 Create BSP library 248
 10.3.2 Configure the BSP using BSP Editor 249
 10.3.3 Create user application directory and add application files 250
 10.3.4 Build and run software 251
 10.3.5 Check code size 252
10.4 System id core for hardware-software consistency 252
10.5 Direct low-level I/O access 254
 10.5.1 Review of C pointer 254
 10.5.2 C pointer for I/O register 255
10.6 Robust low-level I/O access
 10.6.1 system.h
 10.6.2 alt_types.h
 10.6.3 io.h

10.7 Some C techniques for low-level I/O operations
 10.7.1 Bit manipulation
 10.7.2 Packing and unpacking

10.8 Software development
 10.8.1 Basic embedded program architecture
 10.8.2 Main program and task routines

10.9 Bibliographic notes

10.10 Suggested experiments
 10.10.1 Chasing LED circuit
 10.10.2 Collision LED circuit
 10.10.3 Pulse width modulation circuit
 10.10.4 Rotating square circuit
 10.10.5 Heartbeat circuit

10.11 Complete program listing

11 Predesigned Nios II I/O Peripherals

11.1 Overviews

11.2 PIO core
 11.2.1 Configuration
 11.2.2 Register map
 11.2.3 Visible register

11.3 JTAG UART core
 11.3.1 Configuration
 11.3.2 Register map

11.4 Internal timer core
 11.4.1 Configuration
 11.4.2 Register map

11.5 Enhanced flashing-LED Nios II system
 11.5.1 SOPC design
 11.5.2 Top-level HDL file

11.6 Software development of enhanced flashing-LED system
 11.6.1 Introduction to device driver
 11.6.2 Program structure of the enhanced flashing-LED system
 11.6.3 Main program
 11.6.4 Function naming convention

11.7 Device driver routines
 11.7.1 Driver for PIO peripherals
 11.7.2 JTAG UART
11.7.3 Timer

11.8 Task routines

11.8.1 The `flashsys_init_v1()` function
11.8.2 The `sw_get_command_v1()` function
11.8.3 The `jtaguart_disp_msg_v1()` function
11.8.4 The `sseg_disp_msg_v1()` function
11.8.5 The `led_flash_v1()` function

11.9 Software construction and testing

11.10 Bibliographic notes

11.11 Suggested experiments

11.11.1 "Uptime" feature in flashing-LED system
11.11.2 Counting with different timer mode
11.11.3 JTAG UART input
11.11.4 Enhanced collision LED circuit
11.11.5 Rotating LED banner circuit
11.11.6 Enhanced stopwatch
11.11.7 Parking lot occupancy counter
11.11.8 Reaction timer with pushbutton switch control
11.11.9 Reaction timer with keyboard control
11.11.10 Communication with serial port

11.12 Complete program listing

12 Predesigned Nios II I/O Drivers and HAL API

12.1 Overview of HAL

12.1.1 Desktop-like and barebone embedded systems
12.1.2 HAL paradigm
12.1.3 Device classes
12.1.4 HAL-compliant device drivers
12.1.5 The `_regs.h` file
12.1.6 HAL-based initialization sequence

12.2 BSP

12.2.1 Overview
12.2.2 BSP file structure
12.2.3 BSP configuration

12.3 HAL-based flashing-LED program

12.3.1 Functions using generic I/O devices
12.3.2 Functions using non-generic I/O devices
12.3.3 Initialization routine and main program
12.3.4 Software construction and testing

12.4 Device driver consideration

12.4.1 I/O access methods
12.4.2 Comparisons
12.4.3 Device drivers in this book 320
12.5 Bibliographic notes 321
12.6 Suggested experiments 321
12.6.1 "Uptime" feature in flashing-LED system 321
12.6.2 Enhanced collision LED circuit 322
12.6.3 Parking lot occupancy counter 322
12.6.4 Reaction timer with keyboard control 322
12.6.5 Digital alarm clock 322
12.7 Complete program listing 323

13 Interrupt and ISR 325
13.1 Interrupt processing in the HAL framework 325
13.1.1 Overview 326
13.1.2 Interrupt controller of the Nios II processor 326
13.1.3 Top-level exception handler 327
13.1.4 Interrupt service routines 328
13.2 Interrupt-based flashing-LED program 328
13.2.1 Interrupt of timer core 329
13.2.2 Driver of timer core 329
13.2.3 ISR version 1 330
13.2.4 ISR version 2 332
13.3 Interrupt and scheduling 333
13.3.1 Scheduling 333
13.3.2 Performance 335
13.4 Bibliographic notes 336
13.5 Suggested experiments 336
13.5.1 Flashing-LED system with pushbutton switch ISR 336
13.5.2 ISR-driven flashing-LED system 336
13.5.3 "Uptime" feature in flashing-LED system 337
13.5.4 Reaction timer with keyboard control 337
13.5.5 Digital alarm clock 337
13.6 Complete program listing 338

PART III CUSTOM I/O PERIPHERAL DEVELOPMENT

14 Custom I/O Peripheral with PIO Cores 345
14.1 Introduction 345
14.2 Integration of division circuit to a Nios II system 346
14.2.1 PIO modules 346
14.2.2 Integration 347
14.3 Testing 347
14.4 Suggested experiments 350
14.4.1 Division core ISR 350
14.4.2 Division core with eight-bit data 350
14.4.3 Division core with 64-bit data 350
14.4.4 Fibonacci number circuit 350
14.4.5 Period counter 350

15 Avalon Interconnect and SOPC Component 351

15.1 Introduction 351
15.2 Avalon MM interface 355
 15.2.1 Avalon MM slave interface signals 355
 15.2.2 Avalon MM slave interface properties 356
 15.2.3 Avalon MM slave timing 356
15.3 System interconnect fabric for Avalon interface 359
15.4 SOPC I/O component wrapping circuit 361
 15.4.1 Interface I/O buffer 361
 15.4.2 Memory alignment 364
 15.4.3 Output decoding from an Avalon MM master 364
 15.4.4 Input multiplexing to an Avalon MM master 366
 15.4.5 Practical consideration 367
15.5 SOPC component construction tutorial 368
 15.5.1 Avalon interfaces 368
 15.5.2 Register map 369
 15.5.3 Wrapped division circuit 370
 15.5.4 SOPC component creation 372
 15.5.5 SOPC component instantiation 379
15.6 Testing 381
15.7 Bibliographic notes 383
15.8 Suggested experiments 383
 15.8.1 Division core ISR 383
 15.8.2 Alternative buffering scheme for the division core 383
 15.8.3 Division core with eight-bit data 384
 15.8.4 Division core with 64-bit data 384
 15.8.5 Fibonacci number circuit 384
 15.8.6 Period counter 384

16 SRAM and SDRAM Controllers 385

16.1 Memory resources of DE1 board 385
16.2 Brief overview of timing and clock management 386
 16.2.1 Clock distribution network 386
 16.2.2 Timing consideration of off-chip access 387
 16.2.3 PLL 388
16.3 Overview of SRAM
 16.3.1 SRAM cell 389
 16.3.2 Basic organization 390
 16.3.3 Timing 391
 16.3.4 IS6LV25616AL SRAM device 393
16.4 SRAM controller IP core 394
 16.4.1 Avalon interfaces 394
 16.4.2 Controller circuit 396
 16.4.3 SOPC component creation 397
16.5 Overview of DRAM 398
 16.5.1 DRAM cell 398
 16.5.2 Basic DRAM organization 400
 16.5.3 DRAM timing 401
16.6 Overview of SDRAM 403
 16.6.1 Basic SDRAM organization 403
 16.6.2 SDRAM timing 404
 16.6.3 ICSI IS42S16400 SDRAM device 406
16.7 SDRAM controller and PLL 406
 16.7.1 Basic SDRAM controller 406
 16.7.2 SDRAM controller IP core 408
 16.7.3 SOPC PLL IP core 408
16.8 Testing system 411
 16.8.1 Testing hardware configuration 411
 16.8.2 Testing software 415
16.9 Bibliographic notes 418
16.10 Suggested experiments 418
 16.10.1 SRAM controller without I/O register 418
 16.10.2 SRAM controller speed test 418
 16.10.3 SRAM controller with Avalon MM tristate interface 419
 16.10.4 SDRAM controller clock skew test 419
 16.10.5 Memory performance comparison 419
 16.10.6 Effect of cache memory 419
 16.10.7 SDRAM controller from scratch 419
16.11 Complete program listing 420

17 PS2 Keyboard and Mouse 423
17.1 Introduction 423
17.2 PS2 receiving subsystem 424
 17.2.1 PS2-device-to-host communication protocol 424
 17.2.2 Design and code 425
17.3 PS2 transmitting subsystem 428
 17.3.1 Host-to-PS2-device communication protocol 428
17.3.2 Design and code
17.4 Complete PS2 system
17.5 PS2 controller IP core development
 17.5.1 Avalon interfaces
 17.5.2 Register map
 17.5.3 Wrapped PS2 system
 17.5.4 SOPC component creation
17.6 PS2 driver
 17.6.1 Register map
 17.6.2 Write routines
 17.6.3 Read routines
17.7 Keyboard driver
 17.7.1 Overview of the scan code
 17.7.2 Interaction with host
 17.7.3 Driver routines
17.8 Mouse driver
 17.8.1 Overview of PS2 mouse protocol
 17.8.2 Interaction with host
 17.8.3 Driver routines
17.9 Test
17.10 Use of book's custom IP cores
 17.10.1 File organization
 17.10.2 SOPC library integration
 17.10.3 Comprehensive Nios II testing system
17.11 Bibliographic notes
17.12 Suggested experiments
 17.12.1 PS2 receiving subsystem with watchdog timer
 17.12.2 Software receiving FIFO
 17.12.3 Software PS2 controller
 17.12.4 Keyboard-controlled LED flashing circuit
 17.12.5 Enhanced keyboard driver routine I
 17.12.6 Enhanced keyboard driver routine II
 17.12.7 Remote-mode mouse driver
 17.12.8 Scroll-wheel mouse driver
17.13 Complete program listing

18 VGA Controller

18.1 Introduction
 18.1.1 Basic operation of a CRT
 18.1.2 VGA port of the DE1 board
 18.1.3 Video controller
18.2 VGA synchronization
18.2.1 Horizontal synchronization 480
18.2.2 Vertical synchronization 481
18.2.3 Timing calculation of VGA synchronization signals 482
18.2.4 HDL implementation 482

18.3 SRAM-based video RAM controller 484
18.3.1 Overview of video memory 484
18.3.2 Memory consideration of DE1 board 485
18.3.3 Ad hoc SRAM controller 486
18.3.4 HDL code 491

18.4 Palette circuit 494

18.5 Video controller IP core development 495
18.5.1 Complete video controller 495
18.5.2 Avalon interfaces 495
18.5.3 Register map 496
18.5.4 Wrapped video controller 496
18.5.5 SOPC component creation 497

18.6 Video driver 498
18.6.1 Video memory access routines 498
18.6.2 Geometrical model routine 499
18.6.3 Bitmap processing routines 500
18.6.4 Bit-mapped text routines 503

18.7 Mouse processing routines 506

18.8 Testing program 507
18.8.1 Chart plotting routine 509
18.8.2 General plotting functions 510
18.8.3 Strip swapping routine 512
18.8.4 Mouse demonstration routine 512
18.8.5 Bit-mapped text routine 513

18.9 Bitmap file processing 514
18.9.1 BMP format overview 514
18.9.2 Generation of BMP file 515
18.9.3 Sprite-based design 515
18.9.4 BMP file access 516
18.9.5 Host-based file system 517
18.9.6 Bitmap file retrieval routines 519

18.10 Bibliographic notes 522

18.11 Suggested experiments 523
18.11.1 PLL-based VGA controller 523
18.11.2 VGA controller with 16-bit memory configuration 523
18.11.3 VGA controller with 3-bit color depth 523
18.11.4 VGA controller with 1-bit color depth 523
18.11.5 VGA controller with double buffering 523
18.11.6 VGA controller with 320-by-240 resolution 523
18.11.7 VGA controller with vertical mode operation 524
18.11.8 Geometrical model functions 524
18.11.9 Bitmap manipulation functions 524
18.11.10 Simulated “Etch A Sketch” toy 524
18.11.11 Palette lookup table circuit 524
18.11.12 Virtual LED flashing system panel 525
18.11.13 Virtual analog wall clock 525
18.12 Suggested projects 525
18.12.1 Configurable VGA controller 525
18.12.2 VGA controller using system SDRAM 525
18.12.3 Paint program 525
18.12.4 Video game 526
18.13 Complete program listing 527

19 Audio Codec Controller 555

19.1 Introduction 555
19.1.1 Overview of codec 555
19.1.2 Overview of WM8731 device 556
19.1.3 Registers of WM8731 device 557
19.2 I²C controller 560
19.2.1 Overview of I²C interface 560
19.2.2 HDL implementation 562
19.3 Codec data access controller 568
19.3.1 Overview of digital audio interface 568
19.3.2 HDL implementation 569
19.4 Audio codec controller IP core development 572
19.4.1 Complete audio codec controller 572
19.4.2 Avalon interfaces 574
19.4.3 Register map 575
19.4.4 Wrapped audio codec controller 575
19.4.5 SOPC component creation 577
19.5 Codec driver 577
19.5.1 I²C command routines 577
19.5.2 Data source select routine 578
19.5.3 Device initialization routine 578
19.5.4 Audio data access routines 579
19.6 Testing program 580
19.7 Audio file processing 583
19.7.1 WAV format overview 583
19.7.2 Audio format conversion program 584
19.7.3 Audio data retrieval routine 585
20 SD Card Controller

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Overview of SD card</td>
<td>601</td>
</tr>
<tr>
<td>20.2</td>
<td>SPI controller</td>
<td>602</td>
</tr>
<tr>
<td>20.2.1</td>
<td>Overview of SPI interface</td>
<td>602</td>
</tr>
<tr>
<td>20.2.2</td>
<td>HDL implementation</td>
<td>603</td>
</tr>
<tr>
<td>20.3</td>
<td>SPI controller IP core development</td>
<td>606</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Avalon interfaces</td>
<td>606</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Register map</td>
<td>606</td>
</tr>
<tr>
<td>20.3.3</td>
<td>Wrapped SPI controller</td>
<td>607</td>
</tr>
<tr>
<td>20.3.4</td>
<td>SOPC component creation</td>
<td>608</td>
</tr>
<tr>
<td>20.4</td>
<td>SD card protocol</td>
<td>608</td>
</tr>
<tr>
<td>20.4.1</td>
<td>SD card command and response formats</td>
<td>608</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Initialization and identification process</td>
<td>610</td>
</tr>
<tr>
<td>20.4.3</td>
<td>Data read and write process</td>
<td>611</td>
</tr>
<tr>
<td>20.5</td>
<td>SPI and SD card driver</td>
<td>613</td>
</tr>
<tr>
<td>20.5.1</td>
<td>SPI driver routines</td>
<td>613</td>
</tr>
<tr>
<td>20.5.2</td>
<td>SD card driver routines</td>
<td>614</td>
</tr>
<tr>
<td>20.6</td>
<td>File access</td>
<td>619</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Overview of FAT16 structure</td>
<td>620</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Read-only FAT16 file access driver routines</td>
<td>625</td>
</tr>
<tr>
<td>20.7</td>
<td>Testing program</td>
<td>632</td>
</tr>
<tr>
<td>20.8</td>
<td>Performance of SD card data transfer</td>
<td>636</td>
</tr>
<tr>
<td>20.9</td>
<td>Bibliographic notes</td>
<td>637</td>
</tr>
<tr>
<td>20.10</td>
<td>Suggested experiments</td>
<td>637</td>
</tr>
<tr>
<td>20.10.1</td>
<td>SD card data transfer performance test</td>
<td>637</td>
</tr>
</tbody>
</table>
20.10.2 Robust SD card driver routines 637
20.10.3 Dedicated processor for SD card access 638
20.10.4 Hardware-based SD card read and write operation 638
20.10.5 SD card information retrieval 638
20.10.6 MMC card support 638
20.10.7 Multiple sector read and write operation 638
20.10.8 SD card driver routines with CRC checking 639
20.10.9 Digital music player 639
20.10.10 Digital picture frame 639
20.10.11 Additional FAT functionalities 639

20.11 Suggested projects 639
20.11.1 HAL API file access integration 639
20.12 Complete program listing 640

PART IV HARDWARE ACCELERATOR CASE STUDIES

21 GCD Accelerator 663

21.1 Introduction 663
21.2 Software implementation 664
21.3 Hardware implementation 665
 21.3.1 ASMD chart 665
 21.3.2 HDL implementation 665
21.4 Time measurement 668
 21.4.1 HAL time stamp driver 668
 21.4.2 Custom hardware counter 669
21.5 GCD accelerator IP core development 669
 21.5.1 Avalon interfaces 669
 21.5.2 Register map 669
 21.5.3 Wrapped GCD accelerator 669
21.6 Testing program 671
 21.6.1 GCD routines 671
 21.8.2 Main program 673
21.7 Performance comparison 673
21.8 Bibliographic notes 674
21.9 Suggested experiments 675
 21.9.1 Performance with other processor configuration 675
 21.9.2 GCD accelerator with minimal size 675
 21.9.3 GCD accelerator with trailing zero circuit 675
 21.9.4 GCD accelerator with 64-bit data 675
 21.9.5 GCD accelerator with 128-bit data 675
 21.9.6 GCD by Euclid’s algorithm 675
21.10 Complete program listing 676
22 Mandelbrot Set Fractal Accelerator 681

22.1 Introduction 681
 22.1.1 Overview of the Mandelbrot set 683
 22.1.2 Determination of a Mandelbrot set point 683
 22.1.3 Coloring scheme 684
 22.1.4 Generation of a fractal image 685

22.2 Fixed-point arithmetic 687

22.3 Software implementation of calc_frac_point() 688

22.4 Hardware implementation of calc_frac_point() 689
 22.4.1 ASMD chart 689
 22.4.2 HDL implementation 689

22.5 Mandelbrot set fractal accelerator IP core development 692
 22.5.1 Avalon interface 692
 22.5.2 Register map 692
 22.5.3 Wrapped Mandelbrot set fractal accelerator 693

22.6 Testing program 694
 22.6.1 Fractal graphic user interface 694
 22.6.2 Fractal hardware accelerator engine control routine 695
 22.6.3 Fractal drawing routine 696
 22.6.4 Text panel display routines 697
 22.6.5 Mouse processing routine 698
 22.6.6 Main program 700

22.7 Discussion 701

22.8 Bibliographic notes 701

22.9 Suggested experiments 702
 22.9.1 Hardware accelerator with one multiplier 702
 22.9.2 Hardware accelerator with modified escape condition 702
 22.9.3 Hardware accelerator with Q4.12 format 702
 22.9.4 Hardware accelerator with multiple fractal engines 702
 22.9.5 “Burning-ship” fractal 702
 22.9.6 Enhanced testing program 703

22.10 Suggested projects 703
 22.10.1 Floating-point hardware accelerator 703
 22.10.2 General fractal drawing platform 703

22.11 Complete program listing 704

23 Direct Digital Frequency Synthesis 715

23.1 Introduction 715

23.2 Design and implementation 715
 23.2.1 Direct synthesis of a digital waveform 716
 23.2.2 Direct synthesis of an unmodulated analog waveform 717
23.2.3 Direct synthesis of a modulated analog waveform
23.2.4 HDL implementation

23.3 DDFS IP core development
23.3.1 Avalon interface
23.3.2 Register map
23.3.3 Wrapped DDFS circuit
23.3.4 Codec DAC integration

23.4 DDFS driver
23.4.1 Configuration routines
23.4.2 Initialization routine

23.5 Testing
23.5.1 Overview of music notes and synthesis
23.5.2 Testing program

23.6 Bibliographic notes

23.7 Suggested experiments
23.7.1 Quadrature phase carrier generation
23.7.2 Reduced-size phase-to-amplitude lookup table
23.7.3 Synthetic music player
23.7.4 Keyboard piano
23.7.5 Keyboard recorder
23.7.6 Hardware envelope generator
23.7.7 Additive harmonic synthesis
23.7.8 Sample-based synthesis

23.8 Suggested projects
23.8.1 Sound generator
23.8.2 Function generator
23.8.3 Full-fledged electric synthesizer

23.9 Complete program listing

References

Topic Index