Neuropharmacology is the study of drugs that affect the nervous system. This includes not only the identification of neuronal drug targets but also the study of basic mechanisms of neural function that may be amenable to pharmacological manipulation. Indeed, neuropharmacological drugs are commonly used as valuable tools to discover how nerve cells function and communicate in addition to therapeutic agents for the treatment of a wide variety of neuropsychiatric disorders. In fact, drugs that are used to treat disorders of the brain and nervous system represent one of the largest groups of approved therapeutic agents. Clearly the demand for drugs to treat disorders of the nervous system will only grow in the face of an aging population. Not surprisingly, almost all major pharmaceutical corporations and many biotechnology companies have extensive drug discovery programs in neuroscience and neuropharmacology. The recent pace of research and discovery in neuropharmacology and associated therapeutics has been quite rapid, as is true for most areas of biomedical research. Given this as well as the extremely broad nature of the field, we felt that it would be timely and important to develop a comprehensive handbook of neuropharmacology that would include state-of-art reviews covering both basic principles and novel approaches for clinical therapeutics.

Our approach for the organization of this handbook was primarily translational (bench to bedside) in nature. The three book volumes consist of 10 clinical sections, each consisting of 4–7 chapters devoted to various neuropsychiatric disorders, including mood, anxiety, and stress disorders, psychosis, pain, neurodegeneration, and many others. In most cases, these sections have introductory chapters providing background information and/or basic principles prior to presenting chapters covering state-of-the-art therapeutics. Volume I also contains a large introductory section consisting of 17 chapters on basic neuropharmacological subjects and principles. These include chapters on the history of neuropharmacology as well as intercellular and intracellular signaling followed by chapters covering all of the major neurotransmitter systems and other important signaling molecules, such as ion channels and transporters. Our objective for this project was to create a high-level reference work that will be useful to all practitioners of neuropharmacology ranging from graduate students, academicians, and clinicians to industrial scientists working in drug discovery. These volumes will be part of the John Wiley & Sons major reference work program and will be published online as well as in print. The online version of this handbook is expected to undergo frequent updates and additions in order to maintain its cutting-edge status.
The editors would like to thank all of the chapter contributors for their hard work and commitment to this project. We would also like to thank our managing editor, Jonathan Rose, at John Wiley & Sons for all of the valuable assistance that he has provided.

David R. Sibley
Israel Hanin
Michael J. Kuhar
Phil Skolnick