1. Introduction

1.1 Background
1.2 Electrical Transmission Networks
1.3 Conventional Control Mechanisms
 1.3.1 Automatic Generation Control (AGC)
 1.3.2 Excitation Control
 1.3.3 Transformer Tap-Changer Control
 1.3.4 Phase-Shifting Transformers
1.4 Flexible ac Transmission Systems (FACTS)
 1.4.1 Advances in Power-Electronics Switching Devices
 1.4.2 Principles and Applications of Semiconductor Switches
1.5 Emerging Transmission Networks
References

2. Reactive-Power Control in Electrical Power Transmission Systems

2.1 Reactive Power
2.2 Uncompensated Transmission Lines
 2.2.1 A Simple Case
 2.2.1.1 Load Compensation
 2.2.1.2 System Compensation
 2.2.2 Lossless Distributed Parameter Lines
 2.2.2.1 Symmetrical Lines
 2.2.2.2 Midpoint Conditions of a Symmetrical Line
 2.2.2.3 Case Study
2.3 Passive Compensation
 2.3.1 Shunt Compensation
 2.3.2 Series Compensation
 2.3.3 Effect on Power-Transfer Capacity
 2.3.3.1 Series Compensation
 2.3.3.2 Shunt Compensation
References
2.4 Summary
References

3. Principles of Conventional Reactive-Power Compensators

3.1 Introduction

3.2 Synchronous Condensers
3.2.1 Configuration
3.2.2 Applications
 3.2.2.1 Control of Large-Voltage Excursions
 3.2.2.2 Dynamic Reactive-Power Support at HVDC Terminals

3.3 The Saturated Reactor (SR)
3.3.1 Configuration
3.3.2 Operating Characteristics

3.4 The Thyristor-Controlled Reactor (TCR)
3.4.1 The Single-Phase TCR
3.4.2 The 3-Phase TCR
3.4.3 The Thyristor-Switched Reactor (TSR)
3.4.4 The Segmented TCR
3.4.5 The 12-Pulse TCR
3.4.6 Operating Characteristics of a TCR
 3.4.6.1 Operating Characteristics Without Voltage Control
 3.4.6.2 Operating Characteristic With Voltage Control

3.5 The Thyristor-Controlled Transformer (TCT)

3.6 The Fixed Capacitor–Thyristor-Controlled Reactor (FC–TCR)
3.6.1 Configuration
3.6.2 Operating Characteristic
 3.6.2.1 Without Step-Down Transformer
 3.6.2.2 With Step-Down Transformer

3.7 The Mechanically Switched Capacitor–Thyristor-Controlled Reactor (MSC–TCR)

3.8 The Thyristor-Switched Capacitor (TSC)
3.8.1 Switching a Capacitor to a Voltage Source
3.8.2 Switching a Series Connection of a Capacitor and Reactor
 3.8.2.1 The Term Involving Fundamental Frequency, ω₀

References
39
3.8.2.2 The Terms Involving Natural Resonance Frequency, \(\omega_n \) 74
3.8.2.3 Practical Switching Strategies 75
3.8.3 Turning Off of the TSC Valve 78
3.8.4 The TSC Configuration 78
3.8.5 Operating Characteristic 81
3.9 The Thyristor-Switched Capacitor–Thyristor-Controlled Reactor (TSC–TCR) 82
3.9.1 Configuration 82
3.9.2 Operating Characteristic 83
3.9.2.1 A Practical Example 83
3.9.3 Current Characteristic 84
3.9.4 Susceptance Characteristic 86
3.9.5 Mismatched TSC–TCR 87
3.10 A Comparison of Different SVCs 89
3.10.1 Losses 89
3.10.2 Performance 91
3.11 Summary 91
References 91

4. SVC Control Components and Models 93
4.1 Introduction 93
4.2 Measurement Systems 93
4.2.1 Voltage Measurement 94
4.2.1.1 ac/dc Rectification 95
4.2.1.2 Coordinate Transformation 95
4.2.1.3 Fourier Analysis 96
4.2.1.4 Measurement of Squared Voltage 97
4.2.2 The Demodulation Effect of the Voltage-Measurement System 98
4.2.2.1 Addition 98
4.2.2.2 Modulation 101
4.2.2.3 Fourier Analysis–Based Measurement System 101
4.2.2.4 Coordinate Transformation–Based Measurement Systems 104
4.2.2.5 ac/dc Rectification–Based Measurement Systems 104
4.2.2.6 Filtering Requirements 104
4.2.3 Current Measurement 106
4.2.4 Power Measurement 109
4.2.5 The Requirements of Measurement Systems 110
4.2.5.1 Phasor Transducers 112
4.2.5.2 Optical Sensors 112

4.3 The Voltage Regulator 112
4.3.1 The Basic Regulator 112
4.3.2 The Phase-Locked Oscillator (PLO) Voltage Regulator 118
 4.3.2.1 The Basic Single-Phase Oscillator 118
 4.3.2.2 The 3-Phase Oscillator 120
4.3.3 The Digital Implementation of the Voltage Regulator 121
 4.3.3.1 Digital Control 122

4.4 Gate-Pulse Generation 123
4.4.1 The Linearizing Function 124
4.4.2 Delays in the Firing System 125
 4.4.2.1 Thyristor Deadtime 125
 4.4.2.2 Thyristor Firing-Delay Time 126

4.5 The Synchronizing System 127

4.6 Additional Control and Protection Functions 128
4.6.1 The Damping of Electromechanical Oscillations 128
4.6.2 The Susceptance (Reactive-Power) Regulator 129
4.6.3 The Control of Neighboring Var Devices 131
4.6.4 Undervoltage Strategies 132
4.6.5 The Secondary-Overvoltage Limiter 132
4.6.6 The TCR Overcurrent Limiter 133
4.6.7 TCR Balance Control 133
4.6.8 The Nonlinear Gain and the Gain Supervisor 133

4.7 Modeling of SVC for Power-System Studies 134
4.7.1 Modeling for Load-Flow Studies 134
 4.7.1.1 SVC Operation Within the Control Range 134
 4.7.1.2 SVC Operation Outside the Control Range 135
4.7.2 Modeling for Small- and Large-Disturbance Studies 136
4.7.3 Modeling for Subsynchronous Resonance (SSR) Studies 137
4.7.4 Modeling for Electromagnetic Transient Studies 137
4.7.5 Modeling for Harmonic-Performance Studies 137

4.8 Summary 138
References 138

5. Concepts of SVC Voltage Control 142
5.1 Introduction 142
5.2 Voltage Control 142
 5.2.1 V-I Characteristics of the SVC 142
5.2.1.1 *Dynamic Characteristics* 142
5.2.1.2 *Steady-State Characteristic* 145

5.2.2 *Voltage Control by the SVC* 145

5.2.3 *Advantages of the Slope in the SVC Dynamic Characteristic* 147
5.2.3.1 *Reduction of the SVC Rating* 147
5.2.3.2 *Prevention of Frequency Operation at Reactive-Power Limits* 148
5.2.3.3 *Load Sharing Between Parallel-Connected SVCs* 148

5.2.4 *Influence of the SVC on System Voltage* 149
5.2.4.1 *Coupling Transformer Ignored* 149
5.2.4.2 *Coupling Transformer Considered* 151
5.2.4.3 *The System Gain* 152

5.2.5 *Design of the SVC Voltage Regulator* 154
5.2.5.1 *Simplistic Design Based on System Gain* 155
5.2.5.2 *Design That Considers Generator Dynamics* 163

5.3 *Effect of Network Resonances on the Controller Response* 163
5.3.1 *Critical Power-System Parameters* 166
5.3.2 *Sensitivity to Power-System Parameters* 166
5.3.2.1 *Response Variation With Regulator-Transient Gain, K_T* 170
5.3.2.2 *Response Variation With System Strength, $ESCR_0$* 170
5.3.2.3 *Voltage-Sensitivity Transfer Function* 170

5.3.3 *Sensitivity to TCR Operating Point* 172
5.3.4 *Choice of Transient Gain* 175
5.3.5 *Certain Features of the SVC Response* 176
5.3.6 *Methods for Improving the Voltage-Controller Response* 177
5.3.6.1 *Manual Gain Switching* 177
5.3.6.2 *The Nonlinear Gain* 177
5.3.6.3 *Bang-Bang Control* 178
5.3.6.4 *The Gain Supervisor* 178
5.3.6.5 *Series-Dynamic Compensation* 180
5.3.6.6 *ac-Side Control Filters* 183

5.4 *The 2nd Harmonic Interaction Between the SVC and ac Network* 186
5.4.1 *Influence of the 2nd Harmonic Voltage on the TCR* 186
5.4.2 *Causes of 2nd Harmonic Distortion* 191
5.4.2.1 *Fault Clearing* 191
5.4.2.2 Reactor/Transformer Switching Near an SVC 193
5.4.2.3 Geomagnetically Induced Currents 195
5.4.2.4 Noise or Imbalance in the Control Systems 195

5.4.3 TCR Balance Control 195

5.5 Application of the SVC to Series-Compensated ac Systems 199
 5.5.1 ac System–Resonant Modes 199
 5.5.1.1 Shunt-Capacitance Resonance 199
 5.5.1.2 Series-Line Resonance 201
 5.5.1.3 Shunt-Reactor Resonance 201
 5.5.2 SVC Transient Response With Series-Compensated ac-Transmission Lines 203
 5.5.2.1 Reactor Switching 204
 5.5.2.2 Fault Application and Clearing 207
 5.5.3 Effect of the Shunt-Reactor Mode on the SVC Voltage Controller 209
 5.5.3.1 Effect of the TCR Operating Point 211
 5.5.3.2 Filtering of the Shunt-Resonant Mode 211

5.6 3rd Harmonic Distortion 214

5.7 Voltage-Controller Design Studies 217
 5.7.1 Modeling Aspects 217
 5.7.2 Special Performance-Evaluation Studies 217
 5.7.3 Study Methodologies for Controller Design 217
 5.7.3.1 Impedance-Versus-Frequency Computation 217
 5.7.3.2 Eigenvalue Analyses 218
 5.7.3.3 Simulation Studies 218

5.8 Summary 218

References 218

6. SVC Applications 221

6.1 Introduction 221
6.2 Increase in Steady-State Power-Transfer Capacity 221
6.3 Enhancement of Transient Stability 224
 6.3.1 Power-Angle Curves 225
 6.3.2 Synchronizing Torque 226
 6.3.2.1 Uncompensated System 227
 6.3.2.2 SVC-Compensated System 228
 6.3.3 Modulation of the SVC Bus Voltage 229
6.4 Augmentation of Power-System Damping 232
 6.4.1 Principle of the SVC Auxiliary Control 233
6.4.2 Torque Contributions of SVC Controllers 235
 6.4.2.1 Effect of the Power System 235
 6.4.2.2 Effect of the SVC 236

6.4.3 Design of an SVC PSDC 239
 6.4.3.1 Controllability 240
 6.4.3.2 Influence of SVC Sites and the Nature of Loads 240
 6.4.3.3 Selection Criteria for PSDC Input Signals 242
 6.4.3.4 Input Filtering 243
 6.4.3.5 General Characteristics of PSDC Input Signals 243
 6.4.3.6 Performance of PSDC Input Signals 244
 6.4.3.7 SVC PSDC Requirements 245
 6.4.3.8 Design Procedure for a PSDC 248
 6.4.3.9 Case Study 249

6.4.4 Composite Signals for Damping Control 252
 6.4.4.1 Frequency of Remotely Synthesized Voltage 252
 6.4.4.2 Case Study 254

6.4.5 Alternative Techniques for the Design of SVC Auxiliary Controllers 256

6.5 SVC Mitigation of Subsynchronous Resonance (SSR) 257
 6.5.1 Principle of SVC Control 257
 6.5.2 Configuration and Design of the SVC Controller 260
 6.5.3 Rating of an SVC 262

6.6 Prevention of Voltage Instability 263
 6.6.1 Principles of SVC Control 263
 6.6.1.1 A Case Study 263
 6.6.2 Configuration and Design of the SVC Controller 265
 6.6.3 Rating of an SVC 266

6.7 Improvement of HVDC Link Performance 268
 6.7.1 Principles and Applications of SVC Control 269
 6.7.1.1 Voltage Regulation 269
 6.7.1.2 Suppression of Temporary Overvoltages 269
 6.7.1.3 Support During Recovery From Large Disturbances 269
 6.7.2 Configuration and Design of the SVC Controller 271
 6.7.2.1 Interactions Between the SVC and the HVDC 272
 6.7.3 Rating of the SVC 272
8.3.1 Constant-Current (CC) Control 316
8.3.2 Constant-Angle (CA) Control 317
8.3.3 Enhanced Current Control 319
8.3.4 Constant-Power Control 319
8.3.5 Enhanced Power Control 320
8.3.6 Firing Schemes and Synchronization 321
8.4 Improvement of the System-Stability Limit 321
8.5 Enhancement of System Damping 322
 8.5.1 Principle of Damping 323
 8.5.2 Bang-Bang Control 325
 8.5.3 Auxiliary Signals for TCSC Modulation 325
 8.5.3.1 Local Signals 325
 8.5.3.2 Remote Signals 325
 8.5.4 Case Study for Multimodal Decomposition-Based PSDC Design 326
 8.5.4.1 Selection of the Measurement Signal 326
 8.5.4.2 Selection of the Synthesizing Impedance 327
 8.5.5 H_{∞} Method-Based PSDC Design 330
 8.5.6 Alternative Techniques for PSDC Design 334
 8.5.7 Placement of the TCSC 334
8.6 Subsynchronous Resonance (SSR) Mitigation 334
 8.6.1 TCSC Impedance at Subsynchronous Frequencies 335
 8.6.2 A Case Study 340
 8.6.2.1 Transient-Torque Minimization 342
 8.6.2.2 Criteria for SSR Mitigation by the TCSC 342
8.7 Voltage-Collapse Prevention 343
8.8 TCSC Installations 345
 8.8.1 Imperatriz–Serra da Mesa TCSCs in Brazil 346
 8.8.1.1 TCSC Power-Oscillation Damping (POD) Control 348
 8.8.1.2 Phasor Estimation 350
 8.8.1.3 Performance of Both TCSCs 352
 8.8.2 Stode TCSC in Sweden 353
8.9 Summary 355

References 355

9. Coordination of FACTS Controllers 359

 9.1 Introduction 359
 9.2 Controller Interactions 359
 9.2.1 Steady-State Interactions 360
 9.2.2 Electromechanical-Oscillation Interactions 360
 9.2.3 Control or Small-Signal Oscillations 361
9.2.4 Subsynchronous Resonance (SSR) Interactions 361
9.2.5 High-Frequency Interactions 361
9.2.6 The Frequency Response of FACTS Controllers 362
 9.2.6.1 The Frequency Response of the SVC 362
 9.2.6.2 The Frequency Response of the TCSC 364

9.3 SVC–SVC Interaction 364
 9.3.1 The Effect of Electrical Coupling and Short-Circuit Levels 364
 9.3.1.1 Uncoupled SVC Buses 364
 9.3.1.2 Coupled SVC Buses 365
 9.3.2 The System Without Series Compensation 366
 9.3.3 The System With Series Compensation 371
 9.3.3.1 Shunt-Reactor Resonance 373
 9.3.4 High-Frequency Interactions 374
 9.3.5 Additional Coordination Features 379
 9.3.5.1 Parallel SVCs 379
 9.3.5.2 Electrically Close SVCs 380

9.4 SVC–HVDC Interaction 381

9.5 SVC–TCSC Interaction 382
 9.5.1 Input Signal of the TCSC–PSDC With Bus Voltage 384
 9.5.2 Input Signal of the TCSC–PSDC With a System Angle 387
 9.5.3 High-Frequency Interactions 387

9.6 TCSC–TCSC Interaction 393
 9.6.1 The Effect of Loop Impedance 393
 9.6.1.1 Low-Loop Impedance 393
 9.6.1.2 High-Loop Impedance 394
 9.6.2 High-Frequency Interaction 394

9.7 Performance Criteria for Damping-Controller Design 399

9.8 Coordination of Multiple Controllers Using Linear-Control Techniques 401
 9.8.1 The Basic Procedure for Controller Design 401
 9.8.1.1 Derivation of the System Model 401
 9.8.1.2 Enumeration of the System Performance Specifications 402
 9.8.1.3 Selection of the Measurement and Control Signals 402
 9.8.1.4 Controller Design and Coordination 402
 9.8.1.5 Validation of the Design and Performance Evaluation 403
 9.8.2 Controller Coordination for Damping Enhancement 403
9.8.3 Linear Quadratic Regulator (LQR)-Based Technique
9.8.4 Constrained Optimization
9.8.4.1 Techniques Without Explicit Robustness Criteria
9.8.4.2 Techniques With Explicit Robustness Criteria
9.8.5 Nonlinear-Constrained Optimization of a Selective-Model-Performance Index
9.8.6 Global Coordination Using Nonlinear-Constrained Optimization
9.8.7 Control Coordination Using Genetic Algorithms
9.9 Coordination of Multiple Controllers Using Nonlinear-Control Techniques
9.10 Summary
References

10. Emerging FACTS Controllers
10.1 Introduction
10.2 The STATCOM
10.2.1 The Principle of Operation
10.2.2 The V-I Characteristic
10.2.3 Harmonic Performance
10.2.4 Steady-State Model
10.2.5 SSR Mitigation
10.2.5.1 A Study System
10.2.5.2 STATCOM Performance
10.2.6 Dynamic Compensation
10.2.6.1 A Multilevel VSC-Based STATCOM
10.2.6.2 A Selective Harmonic-Elimination Modulation (SHEM) Technique
10.2.6.3 Capacitor-Voltage Control
10.2.6.4 STATCOM Performance
10.3 The SSSC
10.3.1 The Principle of Operation
10.3.2 The Control System
10.3.3 Applications
10.3.3.1 Power-Flow Control
10.3.3.2 SSR Mitigation
10.4 The UPFC
10.4.1 The Principle of Operation
10.4.2 Applications
10.5 Comparative Evaluation of Different FACTS Controllers 449
 10.5.1 Performance Comparison 450
 10.5.2 Cost Comparison 452
10.6 Future Direction of FACTS Technology 453
 10.6.1 The Role of Communications 455
 10.6.2 Control-Design Issues 455
10.7 Summary 456
 References 457

Appendix A. Design of an SVC Voltage Regulator 462
 A.1 Study System 462
 A.2 Method of System Gain 464
 A.3 Eigenvalue Analysis 465
 A.3.1 Step Response 466
 A.3.2 Power-Transfer Studies 471
 A.4 Simulator Studies 472
 A.4.1 Step-Response Studies 472
 A.4.2 Power-Transfer Limits 474
 A.5 A Comparison of Physical Simulator Results With Analytical and Digital Simulator Results Using Linearized Models 475
 References 477

Appendix B. Transient-Stability Enhancement in a Midpoint SVC-Compensated SMIB System 478

Appendix C. Approximate Multimodal Decomposition Method for the Design of FACTS Controllers 481
 C.1 Introduction 481
 C.2 Modal Analysis of the ith Swing Mode, λ_i 483
 C.2.1 Effect of the Damping Controller 485
 C.3 Implications of Different Transfer Functions 486
 C.3.1 Controllability 486
 C.3.2 Observability 486
 C.3.3 The Inner Loop 486
 C.4 Design of the Damping Controller 486
 C.4.1 The Controller-Phase Index (CPI) 487
 C.4.2 The Maximum Damping Influence (MDI) Index 487
 C.4.3 The Natural Phase Influence (NPI) Index 488
 References 489
Appendix D. FACTS Terms and Definitions 490

D.1 Definitions of Basic Terms 490
D.2 Definitions of Facts Controller Terms 490
Reference 492

Index 493