Contents

Preface to the Second Edition \textit{xv}
Preface to the First Edition \textit{ xvii}

1 Introductory Concepts \textit{1}
1.1 Introduction \textit{1}
1.2 The Excitement and Relevance of Nuclear Chemistry \textit{2}
1.3 The Atom \textit{3}
1.4 Atomic Processes \textit{4}
1.4.1 Ionization \textit{5}
1.4.2 X-Ray Emission \textit{5}
1.5 The Nucleus: Nomenclature \textit{7}
1.6 Properties of the Nucleus \textit{8}
1.7 Survey of Nuclear Decay Types \textit{9}
1.8 Modern Physical Concepts Needed in Nuclear Chemistry \textit{12}
1.8.1 Elementary Mechanics \textit{13}
1.8.2 Relativistic Mechanics \textit{14}
1.8.3 de Broglie Wavelength: Wave–Particle Duality \textit{16}
1.8.4 Heisenberg Uncertainty Principle \textit{18}
1.8.5 Units and Conversion Factors \textit{19}
Problems \textit{19}
Bibliography \textit{21}

2 Nuclear Properties \textit{25}
2.1 Nuclear Masses \textit{25}
2.2 Terminology \textit{28}
2.3 Binding Energy Per Nucleon \textit{29}
2.4 Separation Energy Systematics \textit{31}
2.5 Abundance Systematics \textit{32}
2.6 Semiempirical Mass Equation \textit{33}
2.7 Nuclear Sizes and Shapes \textit{39}
2.8 Quantum Mechanical Properties \textit{43}
Contents

2.8.1 Nuclear Angular Momentum 43
2.9 Electric and Magnetic Moments 45
2.9.1 Magnetic Dipole Moment 45
2.9.2 Electric Quadrupole Moment 48
Problems 51
Bibliography 55

3 Radioactive Decay Kinetics 57
3.1 Basic Decay Equations 57
3.2 Mixture of Two Independently Decaying Radionuclides 65
3.3 Radioactive Decay Equilibrium 66
3.4 Branching Decay 76
3.5 Radiation Dosage 77
3.6 Natural Radioactivity 79
3.6.1 General Information 79
3.6.2 Primordial Nuclei and the Uranium Decay Series 79
3.6.3 Cosmogenic Nuclei 81
3.6.4 Anthropogenic Nuclei 83
3.6.5 Health Effects of Natural Radiation 83
3.7 Radionuclide Dating 84
Problems 90
Bibliography 92

4 Nuclear Medicine 93
4.1 Introduction 93
4.2 Radiopharmaceuticals 94
4.3 Imaging 96
4.4 ^{99}Tcm 98
4.5 PET 101
4.6 Other Imaging Techniques 103
4.7 Some Random Observations about the Physics of Imaging 104
4.8 Therapy 108
Problems 110
Bibliography 112

5 Particle Physics and the Nuclear Force 113
5.1 Particle Physics 113
5.2 The Nuclear Force 117
5.3 Characteristics of the Strong Force 119
5.4 Charge Independence of Nuclear Forces 120
Problems 124
Bibliography 124
Contents

6 Nuclear Structure 125
6.1 Introduction 125
6.2 Nuclear Potentials 127
6.3 Schematic Shell Model 129
6.4 Independent Particle Model 141
6.5 Collective Model 143
6.6 Nilsson Model 149
6.7 Fermi Gas Model 152
Problems 161
Bibliography 164

7 α-Decay 167
7.1 Introduction 167
7.2 Energetics of α Decay 169
7.3 Theory of α Decay 173
7.4 Hindrance Factors 182
7.5 Heavy Particle Radioactivity 183
7.6 Proton Radioactivity 185
Problems 186
Bibliography 188

8 β-Decay 191
8.1 Introduction 191
8.2 Neutrino Hypothesis 192
8.3 Derivation of the Spectral Shape 196
8.4 Kurie Plots 199
8.5 β Decay Rate Constant 200
8.6 Electron Capture Decay 206
8.7 Parity Nonconservation 207
8.8 Neutrinos Again 208
8.9 β-Delayed Radioactivities 209
8.10 Double β Decay 211
Problems 213
Bibliography 214

9 γ-Ray Decay 217
9.1 Introduction 217
9.2 Energetics of γ-Ray Decay 218
9.3 Classification of Decay Types 220
9.4 Electromagnetic Transition Rates 223
9.5 Internal Conversion 229
9.6 Angular Correlations 232
9.7 Mössbauer Effect 238
Contents

Problems 244
Bibliography 245

10 Nuclear Reactions 247
10.1 Introduction 247
10.2 Energetics of Nuclear Reactions 248
10.3 Reaction Types and Mechanisms 252
10.4 Nuclear Reaction Cross Sections 253
10.5 Reaction Observables 264
10.6 Rutherford Scattering 264
10.7 Elastic (Diffractive) Scattering 268
10.8 Aside on the Optical Model 270
10.9 Direct Reactions 271
10.10 Compound Nuclear Reactions 273
10.11 Photonuclear Reactions 279
10.12 Heavy-Ion Reactions 281
10.12.1 Coulomb Excitation 284
10.12.2 Elastic Scattering 284
10.12.3 Fusion Reactions 284
10.12.4 Incomplete Fusion 288
10.12.5 Deep-Inelastic Scattering 289
10.13 High-Energy Nuclear Reactions 291
10.13.1 Spallation/Fragmentation Reactions 291
10.13.2 Reactions Induced by Radioactive Projectiles 295
10.13.3 Multifragmentation 296
10.13.4 Quark–Gluon Plasma 298
Problems 298
Bibliography 302

11 Fission 305
11.1 Introduction 305
11.2 Probability of Fission 308
11.2.1 Liquid Drop Model 308
11.2.2 Shell Corrections 310
11.2.3 Spontaneous Fission 312
11.2.4 Spontaneously Fissioning Isomers 315
11.2.5 The Transition Nucleus 316
11.3 Dynamical Properties of Fission Fragments 323
11.4 Fission Product Distributions 327
11.4.1 Total Kinetic Energy (TKE) Release 327
11.4.2 Fission Product Mass Distribution 327
11.4.3 Fission Product Charge Distributions 330
11.5 Excitation Energy of Fission Fragments 334
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems 337</td>
</tr>
<tr>
<td>Bibliography 338</td>
</tr>
<tr>
<td>12 Nuclear Astrophysics 339</td>
</tr>
<tr>
<td>12.1 Introduction 339</td>
</tr>
<tr>
<td>12.2 Elemental and Isotopic Abundances 340</td>
</tr>
<tr>
<td>12.3 Primordial Nucleosynthesis 343</td>
</tr>
<tr>
<td>12.3.1 Stellar Evolution 347</td>
</tr>
<tr>
<td>12.4 Thermonuclear Reaction Rates 351</td>
</tr>
<tr>
<td>12.5 Stellar Nucleosynthesis 353</td>
</tr>
<tr>
<td>12.5.1 Introduction 353</td>
</tr>
<tr>
<td>12.5.2 Hydrogen Burning 353</td>
</tr>
<tr>
<td>12.5.3 Helium Burning 357</td>
</tr>
<tr>
<td>12.5.4 Synthesis of Nuclei with $A < 60$ 359</td>
</tr>
<tr>
<td>12.5.5 Synthesis of Nuclei with $A > 60$ 360</td>
</tr>
<tr>
<td>12.6 Solar Neutrino Problem 366</td>
</tr>
<tr>
<td>12.6.1 Introduction 366</td>
</tr>
<tr>
<td>12.6.2 Expected Solar Neutrino Sources, Energies, and Fluxes 367</td>
</tr>
<tr>
<td>12.6.3 Detection of Solar Neutrinos 369</td>
</tr>
<tr>
<td>12.6.4 The Solar Neutrino Problem 371</td>
</tr>
<tr>
<td>12.6.5 Solution to the Problem: Neutrino Oscillations 371</td>
</tr>
<tr>
<td>12.7 Synthesis of Li, Be, and B 373</td>
</tr>
<tr>
<td>Problems 375</td>
</tr>
<tr>
<td>Bibliography 376</td>
</tr>
<tr>
<td>13 Reactors and Accelerators 379</td>
</tr>
<tr>
<td>13.1 Introduction 379</td>
</tr>
<tr>
<td>13.2 Nuclear Reactors 380</td>
</tr>
<tr>
<td>13.2.1 Neutron-Induced Reaction 380</td>
</tr>
<tr>
<td>13.2.2 Neutron-Induced Fission 383</td>
</tr>
<tr>
<td>13.2.3 Neutron Inventory 384</td>
</tr>
<tr>
<td>13.2.4 Light Water Reactors 386</td>
</tr>
<tr>
<td>13.2.5 The Oklo Phenomenon 391</td>
</tr>
<tr>
<td>13.3 Neutron Sources 392</td>
</tr>
<tr>
<td>13.4 Neutron Generators 392</td>
</tr>
<tr>
<td>13.5 Accelerators 393</td>
</tr>
<tr>
<td>13.5.1 Ion Sources 394</td>
</tr>
<tr>
<td>13.5.2 Electrostatic Machines 396</td>
</tr>
<tr>
<td>13.5.3 Linear Accelerators 400</td>
</tr>
<tr>
<td>13.5.4 Cyclotrons, Synchrotrons, and Rings 403</td>
</tr>
<tr>
<td>13.6 Charged-Particle Beam Transport and Analysis 410</td>
</tr>
<tr>
<td>13.7 Radioactive Ion Beams 415</td>
</tr>
<tr>
<td>13.8 Nuclear Weapons 421</td>
</tr>
</tbody>
</table>
Contents

Problems 425
Bibliography 427

14 The Transuranium Elements 429
- 14.1 Introduction 429
- 14.2 Limits of Stability 429
- 14.3 Element Synthesis 434
- 14.4 History of Transuranium Element Discovery 437
- 14.5 Superheavy Elements 449
- 14.6 Chemistry of the Transuranium Elements 453
- 14.7 Environmental Chemistry of the Transuranium Elements 461
Problems 468
Bibliography 469

15 Nuclear Reactor Chemistry 473
- 15.1 Introduction 473
- 15.2 Fission Product Chemistry 475
- 15.3 Radiochemistry of Uranium 478
- 15.3.1 Uranium Isotopes 478
- 15.3.2 Metallic Uranium 478
- 15.3.3 Uranium Compounds 478
- 15.3.4 Uranium Solution Chemistry 479
- 15.4 The Nuclear Fuel Cycle: The Front End 480
- 15.4.1 Mining and Milling 481
- 15.4.2 Refining and Chemical Conversion 483
- 15.4.3 Isotopic Enhancement 484
- 15.4.4 Fuel Fabrication 487
- 15.5 The Nuclear Fuel Cycle: The Back End 488
- 15.5.1 Properties of Spent Fuel 488
- 15.5.2 Fuel Reprocessing 490
- 15.6 Radioactive Waste Disposal 493
- 15.6.1 Classifications of Radioactive Waste 493
- 15.6.2 Waste Amounts and Associated Hazards 494
- 15.6.3 Storage and Disposal of Nuclear Waste 496
- 15.6.4 Spent Nuclear Fuel 497
- 15.6.5 HLW 498
- 15.6.6 Transuranic Waste 499
- 15.6.7 Low-Level Waste 499
- 15.6.8 Mill Tailings 500
- 15.6.9 Partitioning of Waste 500
- 15.6.10 Transmutation of Waste 501
- 15.7 Chemistry of Operating Reactors 504
- 15.7.1 Radiation Chemistry of Coolants 504
| 15.7.2 | Corrosion | 505 |
| 15.7.3 | Coolant Activities | 505 |
| | Problems | 506 |
| | Bibliography | 507 |

16	Interaction of Radiation with Matter	509
16.1	Introduction	509
16.2	Heavy Charged Particles	512
16.2.1	Stopping Power	512
16.2.2	Range	521
16.3	Electrons	526
16.4	Electromagnetic Radiation	532
16.4.1	Photoelectric Effect	534
16.4.2	Compton Scattering	536
16.4.3	Pair Production	537
16.5	Neutrons	540
16.6	Radiation Exposure and Dosimetry	544
	Problems	548
	Bibliography	550

17	Radiation Detectors	553
17.1	Introduction	553
17.1.1	Gas Ionization	554
17.1.2	Ionization in a Solid (Semiconductor Detectors)	554
17.1.3	Solid Scintillators	555
17.1.4	Liquid Scintillators	555
17.1.5	Nuclear Emulsions	555
17.2	Detectors Based on Collecting Ionization	556
17.2.1	Gas Ionization Detectors	557
17.2.2	Semiconductor Detectors (Solid State Ionization Chambers)	567
17.3	Scintillation Detectors	578
17.4	Nuclear Track Detectors	584
17.5	Neutron Detectors	585
17.6	Nuclear Electronics and Data Collection	587
17.7	Nuclear Statistics	589
17.7.1	Distributions of Data and Uncertainty	591
17.7.2	Rejection of Abnormal Data	597
17.7.3	Setting Upper Limits When No Counts Are Observed	598
	Problems	599
	Bibliography	600

18	Nuclear Analytical Methods	603
18.1	Introduction	603
18.2	Activation Analysis	603
18.2.1 Basic Description of the Method 603
18.2.2 Advantages and Disadvantages of Activation Analysis 605
18.2.3 Practical Considerations in Activation Analysis 607
18.2.4 Applications of Activation Analysis 611
18.3 PIXE 612
18.4 Rutherford Backscattering 615
18.5 Accelerator Mass Spectrometry (AMS) 619
18.6 Other Mass Spectrometric Techniques 620
Problems 621
Bibliography 623

19 Radiochemical Techniques 625
19.1 Introduction 625
19.2 Unique Aspects of Radiochemistry 626
19.3 Availability of Radioactive Material 630
19.4 Targetry 632
19.5 Measuring Beam Intensity and Fluxes 637
19.6 Recoils, Evaporation Residues, and Heavy Residues 639
19.7 Radiochemical Separation Techniques 644
19.7.1 Precipitation 644
19.7.2 Solvent Extraction 645
19.7.3 Ion Exchange 648
19.7.4 Extraction Chromatography 650
19.7.5 Rapid Radiochemical Separations 652
19.8 Low-Level Measurement Techniques 653
19.8.1 Blanks 654
19.8.2 Low-Level Counting: General Principles 654
19.8.3 Low-Level Counting: Details 655
19.8.4 Limits of Detection 658
Problems 659
Bibliography 660

20 Nuclear Forensics 663
20.1 Introduction 663
20.1.1 Basic Principles of Forensic Analysis 666
20.2 Chronometry 670
20.3 Nuclear Weapons and Their Debris 672
20.3.1 RDD or Dirty Bombs 672
20.3.2 Nuclear Explosions 674
20.4 Deducing Sources and Routes of Transmission 678
Problems 680
Bibliography 681
<table>
<thead>
<tr>
<th>Appendix A: Fundamental Constants and Conversion Factors</th>
<th>683</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B: Nuclear Wallet Cards</td>
<td>687</td>
</tr>
<tr>
<td>Appendix C: Periodic Table of the Elements</td>
<td>711</td>
</tr>
<tr>
<td>Appendix D: Alphabetical List of the Elements</td>
<td>713</td>
</tr>
<tr>
<td>Appendix E: Elements of Quantum Mechanics</td>
<td>715</td>
</tr>
<tr>
<td>Index</td>
<td>737</td>
</tr>
</tbody>
</table>