INDEX

Accelerating Rate Calorimeter . 122, 227
Accumulation ..25
 Percent of MAWP30
Advanced Reactive System
 Screening Tool231
API Standard 521
 Protection by System Design41
API Standard 620
 MAWP ..27
API Standard 650
 MAWP..27
 APTAC237
 ARC ..122, 227
 ARSST231
ASME BPV Code24
 Block Valves139
 Devices in Combination110
 Devices in Series89
 Discharge Lines85
 Liquid Pressure Relief Valves 83
 MAWP ..26
 Pressure28
 Protection by System Design ...38
 Relief System Layout81
 Rupture Disks88, 106
ASME BPV Code Provisions
 Codes, Standards and Guidelines ..101
 In External Vessel481
 In Original Vessel480
Automatic Pressure Tracking
 Adiabatic Calorimeter237
 Balanced Valves50
Calorimetry122, 211, 226
 Adiabatic220
 Data Interpretation256
 Isothermal220
 Screening220
 Types219
CCFlow310, 325
Chemical Reactions126, 213
 Kinetics120, 121, 265
 Reaction Kinetics265
 Reaction Rates218
Choked Flow342
 Adiabatic Compressible Flow 363
 Ideal Gas343
 Isothermal Compressible Flow 365
 Two-Phase Liquid345
Containment Systems480
 Design Options482
 Disposal of Discharged Material 482
 Coupling Equation183, 186
Cyclones506
 Alternate Cyclone513
 Design Procedure510
 Droplet Removal Efficiency ..508
 Reaction Force516
 Separator Sizing Procedure511
 Design Flow Rate
 Rupture Disks404
 Safety Relief Valves406
 Differential Scanning Calorimeter ..222
 Dimensionless Gas-Phase Velocity
 Parameter182
 Discharge Coefficient338
 Choked Flow339
 Gas Flow340
 Liquid Flow341
 Two-Phase Flow342
Discharge Piping
 Anchors428
 Pipe Size428
 Real Gases428
Discharge Piping, and Collection
 Headers...................................483
 Corrosion484
DSC ..222
Dynamic Load Factor
 Dynamic Load Factor402
Emergency Relief Effluent Handling .. 434, 470
 Absorbers........... See Scrubbers
 Atmospheric Discharge433
 Capital and Continuing Costs .452
 Discharging to a Common
 Collection System...............449
 Flares 473
General Strategy435
 Passive or Active Systems447
Physical and Chemical Properties ..443
 Plant Geography450
 Possible Condensation and
 Steam-Waster Hammer.....451
 Quench Tanks464
 Selection Factors...............443
 Space Availability..............450
 Time Availability...............452
 Two-Phase Flow and Foaming ..445
 Vapor-Liquid Separation.....451
 Excess Inflow206
 Excess Outflow206
Factors Affecting Opening Pressure ..35
 Constant Superimposed Back
 Pressure..............................35
 Hydrostatic Head31
 Variable Superimposed Back
 Pressure..............................36
Fauske Method
 Two-Phase Flow Systems......337
 Flares473
 Elevated Flares475
 Enclosed Flares476
 Fired or Endothermic Flares ..477
 Smoking Flares versus Smokeless
 Flares477
 Types of Flares474
Fluid Properties..........................115
 Data Sources116
 Mixtures115
 Pure-component116
Friction Loss353
 Exit Loss359
 Expansions and Contractions .357
 Methods355
Gravity Separator See Horizontal /
 Vertical Separators
 Gravity Separators486
 Separator Inlet Velocity
 Considerations491
Header Systems97
Homogeneous Two-Phase Flow
 Analytical Solution374
 Solution............................369, 373
Horizontal Separators492
 API Sizing Method500
Loss of Heating / Cooling206
Low-Pressure Devices
 Gas Flow............................346
Mass and Energy Balance
 Assumptions155
 Simplifications174
 Vessel170
MAWP ..9, 14, 558
 Vessels with 15 psig27
 Vessels with a MAWP over 15
 and less than 3,00026
Maximum Allowable Working
 Pressure See MAWP
Methods of Effluent Handling ...452
 Cyclone Separators462
 Dump Tanks455
 Gravity Separators459
 Internal Containment453
 Vane Impingement Entrainment
 Separators461
 Vapor-Liquid Separators456
Miscellaneous Relief System
 Components..........................76
Mixing Hot Volatile Liquids208
Multi-Component Mixture
 Equation of State Properties... 168
Redlich-Kwong Equation of State
(RKEOS) 164, 324
Mixing Rules 168
Relief Device Types
Low Pressure Relief Valves & Vents 70
Rupture Disk Downstream of a Pressure Relief Valve 70
Rupture Disk Types 62
Rupture Disk Upstream of Pressure Relief Valve 93
Rupture Disks in Series 70
Relief Device Types and Operation .. 42
Relief System Design 13
Approach to Design 15
Best Estimate Flow Rate 100
Blow Through Scenario 114
Discharge Coefficient 103
Discharge Piping 389
Experimental Design 244
High Temperature Failure 28
Incompressible Flow 105
Limitations 14
Maximum Allowable Set Pressures 28
Minimum Required Relief Capacity 100
Occupational Safety and Health Administration 19
Reaction Forces 390
Relief Valve / Rupture Disk Combination 23
Relieving Capacity 100
Scenario Selection 111
Two-Phase Flow Calculations 102
Relief System Layout 81
Bleed - Telltale 92
Combination Device 93
Devices in Series 89
Code Requirements 89
Drainage and Freeze-up Provisions 99
General Code Requirements 81
Installation Practices 13
Low-Pressure Devices 88
Material Selection 97
Mechanical Integrity 97
Parallel Devices 383
Pressure Relief Valves 83
Rupture Disk Devices 88
Relief Valve Sizing 311
Adiabatic Flow 318
API 3% Rule 316
Back Pressure Correction 315
Balanced Valves 322
Choked Flow 318
Choked Mass Flux 318
Choking 342
Discharge Coefficient 338
Flow Model 311
Fluid Property Model 312
Ideal Gas/Vapor Flow 317
Incompressible Flow 313
Liquid Trim Correction 314
Non-Choked Flux 318
Non-Ideal Gas/Vapor Flow 323
Pilot Operated Valves 322
Two-Phase Flow Methods 325
Valve Flow Data 313
Viscosity Correction 315
Runaway Reaction Test 121
Runaway Reaction Test Systems See Calorimetry
Runaway Reactions 212
Onset Temperature 264
Rupture Disk Devices 60, 382
Burst Pressure 23
Burst Pressure Tolerance 31
Calculation Method 89
Certified Flow Resistance K_R 101
Device Advantages /
Disadvantages 77
Failure Modes 40
Forward Acting 62
Liquid Service 53
Nozzle Model 382
Pipe Model 382
Relieving Capacity 46
Reverse Acting 60
Rupture Disk Specifications 63
Rupture Disk Downstream of PRV 385
Rupture Disk Upstream of PRV 385
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrubbers</td>
<td>470</td>
</tr>
<tr>
<td>Operating Mode</td>
<td>470</td>
</tr>
<tr>
<td>Reactive Scrubbing</td>
<td>471</td>
</tr>
<tr>
<td>Types of Scrubbers</td>
<td>472</td>
</tr>
<tr>
<td>Set Pressure</td>
<td>28</td>
</tr>
<tr>
<td>Compensation Requirements</td>
<td>38</td>
</tr>
<tr>
<td>Differential Set Pressure</td>
<td>36</td>
</tr>
<tr>
<td>Percent of MAWP</td>
<td>30</td>
</tr>
<tr>
<td>Reactive Systems</td>
<td>32</td>
</tr>
<tr>
<td>Slip</td>
<td>325, 380</td>
</tr>
<tr>
<td>Slip Models</td>
<td>381</td>
</tr>
<tr>
<td>Speed of Sound</td>
<td></td>
</tr>
<tr>
<td>Ideal Gas/Vapor Flow</td>
<td>317</td>
</tr>
<tr>
<td>Two-Phase Flow Systems</td>
<td>326</td>
</tr>
<tr>
<td>SuperChems™ for DIERS Lite</td>
<td>311</td>
</tr>
<tr>
<td>System Characterization</td>
<td>115</td>
</tr>
<tr>
<td>Tension</td>
<td>423</td>
</tr>
<tr>
<td>Pipe Tension</td>
<td>423</td>
</tr>
<tr>
<td>Rupture Disks</td>
<td>425</td>
</tr>
<tr>
<td>Safety Relief Valves</td>
<td>424</td>
</tr>
<tr>
<td>Thermal Runaway</td>
<td>212</td>
</tr>
<tr>
<td>Transient Forces</td>
<td>409</td>
</tr>
<tr>
<td>Dynamic Load Factor</td>
<td>413</td>
</tr>
<tr>
<td>Gas Relief</td>
<td>414</td>
</tr>
<tr>
<td>Liquid Relief</td>
<td>410</td>
</tr>
<tr>
<td>Rupture Disk</td>
<td>422</td>
</tr>
<tr>
<td>Rupture Disks</td>
<td>412, 416</td>
</tr>
<tr>
<td>Safety Relief Valves</td>
<td>422</td>
</tr>
<tr>
<td>Safety Relief Valves</td>
<td>410, 414</td>
</tr>
<tr>
<td>Two-Phase Flow</td>
<td>422</td>
</tr>
<tr>
<td>Two-Phase Flow Systems</td>
<td></td>
</tr>
<tr>
<td>Fauske Method</td>
<td>337</td>
</tr>
<tr>
<td>Homogeneous Direct Integration (HDI) Method</td>
<td>328</td>
</tr>
<tr>
<td>Omega Method</td>
<td>331</td>
</tr>
<tr>
<td>Onset</td>
<td>188</td>
</tr>
<tr>
<td>Two-Phase Flow Systems</td>
<td>328</td>
</tr>
<tr>
<td>Two-Phase Systems</td>
<td>119</td>
</tr>
<tr>
<td>Classification</td>
<td>119</td>
</tr>
<tr>
<td>Conditions</td>
<td>119</td>
</tr>
<tr>
<td>Venting</td>
<td>149</td>
</tr>
<tr>
<td>Vapor Deflagrations</td>
<td>14</td>
</tr>
<tr>
<td>Vapor-Liquid Disengagement</td>
<td>179</td>
</tr>
<tr>
<td>Coupling Equation</td>
<td>183</td>
</tr>
<tr>
<td>Drift Flux Model</td>
<td>180</td>
</tr>
<tr>
<td>Vessel Hydrodynamic Models</td>
<td>181</td>
</tr>
<tr>
<td>Vent Flow Regime Tests</td>
<td>241</td>
</tr>
<tr>
<td>Vent Sizing Package</td>
<td>234</td>
</tr>
<tr>
<td>Venting</td>
<td></td>
</tr>
<tr>
<td>All Liquid</td>
<td>178</td>
</tr>
<tr>
<td>All Vapor</td>
<td>177</td>
</tr>
<tr>
<td>Homogeneous</td>
<td>178</td>
</tr>
<tr>
<td>Venting Requirements</td>
<td></td>
</tr>
<tr>
<td>Boiling Systems</td>
<td>194</td>
</tr>
<tr>
<td>Fire Exposure</td>
<td>198</td>
</tr>
<tr>
<td>Hydraulic Expansion</td>
<td>197</td>
</tr>
<tr>
<td>Multicomponent</td>
<td>192</td>
</tr>
<tr>
<td>Non-Reacting Cases</td>
<td>189</td>
</tr>
<tr>
<td>Reactive Cases</td>
<td>281</td>
</tr>
<tr>
<td>Single-Component</td>
<td>192</td>
</tr>
<tr>
<td>Vertical Separators</td>
<td>501</td>
</tr>
<tr>
<td>Vessel</td>
<td></td>
</tr>
<tr>
<td>Energy Addition and Subtraction</td>
<td>170</td>
</tr>
<tr>
<td>Volume Balance Criteria</td>
<td>160</td>
</tr>
<tr>
<td>VSP</td>
<td>234</td>
</tr>
<tr>
<td>Vent Sizing Package</td>
<td>123</td>
</tr>
</tbody>
</table>