INDEX

A459, 335
AAC, air pollution and, 309t
AA-MS. See Atomic absorption mass spectrometry (AA-MS)
Abatement policy, 504–507, 505–506t
Abdominal aortic calcification, PM2.5 exposure and, 53, 54t, 422
ABI. See Ankle-brachial index (ABI)
ABPI. See Ankle-brachial pressure index (ABPI)
Accumulation mode, 4
size, 62, 62f
Acetylcholine, 391f, 393
Acid-coated ultrafine particles, 16
Acid Deposition Monitoring Network in East Asia (EANET), 518
Acid rain control program, 514, 515
Activated endothelium, regulation of coagulation system by, 338f, 339f
Activated protein C (APC), 338f, 406
Activator protein (AP)-1, 335
oxidative stress and, 251
Active surface area, 71
Acute cardiovascular diseases, effect of air pollution on, 46f
Acute coronary syndrome, nanoparticle exposure and, 525, 530
Acute lung injury, 336
Acute phase response biomarkers, 197t
Acute respiratory distress syndrome (ARDS), 322
pulmonary endothelium and, 336
pulmonary inflammation and, 327
Adenyl cyclase, 337
Adequate margin of safety, 509
Adipocyte-induced cytokines, 373
ADMA. See Asymmetric dimethylarginine (ADMA)
Adventist Health Study on Smog, 8
Adverse effects, 486
AEC. See Alveolar epithelial cells (AEC)
AEI. See Average exposure indicator (AEI)
Aerodyne aerosol mass spectrometer, 79f
Aerosol ambient, 489–491, 493
determining chemical composition, 220–221
formation of, 62
secondary inorganic, 506–507
size distribution, 62f
Aerosol inhalation methods of particle administration, 127, 128t
Aerosol mass spectrometer (AMS), 79–80, 79f, 84
Aerosol measurement techniques, 65
Aerosol nebulizer, 219
Aerosol time-of-flight mass spectrometer (ATOFMS), 220–221
Age
air pollution effects and, 310–311, 313
myocardial infarction and exposure to PM2.5, 35
Aged adults
adverse particulate matter-related effects, 459
short-term effects of particulate matter on heart rate variability in, 443–444t
Aggregates,
nanoparticle, 109
AHSMOG study, 8, 9

Cardiovascular Effects of Inhaled Ultrafine and Nanosized Particles,
Edited by Flemming R. Cassee, Nicholas L. Mills, and David Newby
Copyright © 2011 John Wiley & Sons, Inc.
Air-blood barrier, nanoparticles crossing, 126, 135, 137, 139–140, 140f, 141
Airborne particles, 61
Air-conditioning, ultrafine particle exposure and, 95, 96
Aircraft emissions, 93
Air exchange rate, 94
Air pollution
atherosclerosis and, 295–296, 307–313, 308–309t
cardiovascular risk and, 288
chronic effects on cardiovascular health, 45–55
comparison of short-term and long-term exposure, 54–55
heart diseases and traffic-related, 50–51
long-term exposure defined, 47
mortality, cardiovascular events, and long-term exposure to, 48–50, 49t
structural heart diseases, 54, 54t
subclinical atherosclerosis, 51–53
vascular diseases, 53
classifying effects, 45
direct effects, 125
DNA damage and, 260
dyslipidemia and, 288
epidemiological study design, 298–300
indirect effects, 125
indoor, 235
intracellular ROS production and, 254, 256f
metabolic syndrome and, 373–374
monitoring in Asia, 517–518
mortality and, 3, 273
oxidized biomolecules and, 260
particulate matter and, 287–288
platelet aggregation and, 410
spatial patterns of concentrations, 48
sudden cardiac death and, 467–469, 468f
Alveolar blood barrier, translocation of nanoparticles across, 385
Alveolar capillaries, 320, 323–324
Alveolar capillary network, 341
Alveolar-deposited soot-absorbed benzo[a]pyrene, translocation of, 205
Alveolar deposition, of ultrafine particles and nanoparticles, 327–328
Alveolar edema, 325
Alveolar endothelium, inflammatory mediators and, 341
Alveolar epithelial cells (AEC)
type I, 324, 334–335
type II, 324, 334–335
Alveolar macrophages (AMs), 332, 333–334
exposure to particulate matter and, 431
response to diesel particles, 279
titanium dioxide particles in, 535, 535f, 536f
Alveolar microvasculature, 324
Alveolar space, particle arrival in, 289–290
Alveolar wall, particulate matter influences on, 341
Alveoli, deposition of ultraine particles in, 276
Ambient aerosol, 489–491, 493
risk assessment of, 489–491
Ambient air particulate matter acute exposures to, 7–8
blood pressure elevations and, 369–371
chronic exposure to, 8–9
human health effects, 6
levels of ultrafine particles, 90–93, 90f, 91f
population exposures to, 5–6
Ambient air pollution, 217–218
Ambient air quality standards, 3
American Cancer Society (ACS) study, 8, 9, 48, 49t, 55, 468f, 489, 491
American Heart Association, on particulate matter increases and cardiovascular mortality, 23
Ammonia
national ceilings for, 506, 507
in ultrafine particles, 82
Ammonium
in fine mode particulate matter, 4
in ultrafine particles, 83, 146, 147
Ammonium sulfates, national ceilings for, 506
AMS. See Aerosol mass spectrometer (AMS)
AMs. See Alveolar macrophages (AMs)
Analysis of variance (ANOVA), 244
Analytical methods, for panel studies, 243–245
Anatase, 174–175
Anatase/rutile titanium dioxide particles, 532–533
Angiogenesis, endothelium and, 382
Angiotensin-converting enzymes, 340
Angiotensin I, 340
Angiotensin II, 340
oxidative stress and, 370, 371
Angiotensin II-mediated hypertension, 365–366t, 367
Angiotensin II receptors, 371
Animal models
cardiovascular disease-associated susceptibility variations in, 206–207
oxidative stress and particulates in experimental, 261–263, 262f
particles and thrombogenesis and platelet activation in, 412–415
Animal studies, 185–208
on arrhythmia and pollutant exposure, 469–470
cardiac and vascular physiology in animals and, 189–195, 191–192t, 194t
on cardiovascular changes following ultrafine particle exposure, 149–150 causative components of particulate matter from, 204–206
on effect of particulate matter on autonomic nervous system, 457–460
on effects of particulate matter on autonomic nervous system balance, 448–449t, 457–460
extrapolation of risk to humans, 486–487
on link between particulate matter exposure and hypertension, 364–367, 365–366t
mechanistic insights from epidemiological and clinical studies that inform, 186–188
on nanoparticles and vascular injury, 326–327
on postulated mechanisms of cardiovascular health effects, 188–189, 189f
on role of neurohumoral influences in cardiovascular effects of particulate matter, 195–196
systemic and cardiovascular markers, 196–204, 197t, 198f, 201f, 203f
Ankle-brachial index (ABI)
air pollution exposure and, 54t, 308–309t
residence close to high traffic and, 310–311
Ankle-brachial pressure index (ABPI)
air pollution and, 310, 311
particulate matter effects on atherogenesis and, 303t, 305
ANOVA. See Analysis of variance (ANOVA)
Anthropogenic PM$_{2.5}$ emissions, 505t
Antioxidants
depletion by particulates, 259–260
ROS detection and, 254
Antithrombin, 406
Antithrombin III, 338f, 339
Aortic artery calcification
air pollution and, 311
particulate matter effects on atherogenesis and, 303t, 304–305
Aortic plaque, PM$_{2.5}$ exposure and, 12, 422
Aortic valve calcification, long-term exposure to air pollution and, 47
APC. See Activated protein C (APC)
INDEX

APHEA. See Air Pollution and Health: A European Approach (APHEA)-2 project
Apob, 281, 289f
Apob-48 lipoproteins, 289f, 291
Apob-100 lipoproteins, 289f
Apobo-related lipid particles, 288
ApoE, oxidative stress and upregulation of, 334–335
ARDS. See Acute respiratory distress syndrome (ARDS)
ARIC. See Atherosclerosis Risk in Communities (ARIC) study
Arrhythmia, air pollution and, 247, 467–480, 468f, 469f
animal studies, 469–470
arrhythmic death, 470–471
hospital admission with arrhythmia, 471–472
implantable defibrillator studies, 473–479, 475t, 476f
nonsustained arrhythmia, 478
particulate matter exposure, 193, 196
ventricular ectopy, 472–473
Arrhythmic death, air pollution and, 470–471
Arsenic, in ultrafine particles, 16, 148t
Arsenic standards, 498
Arterial compliance, particulate matter effects on atherogenesis and, 306
Arterial elasticity, particulate matter effects on atherogenesis and, 306
Arterial stiffness
air pollution and, 309t, 312
particulate matter effects on atherogenesis and, 303t, 306
Arteriolar diameter, air pollution and, 311–312
Aryl hydrocarbon receptor-associated oxidative stress, 333
Asbestos, 492
fiber hazard, 536–537
Asbestosis, 537
Ascorbic acid, particulate exposure and depletion of, 254
Asia
air quality management/standards, 518–520, 519f
monitoring air pollution in, 517–518
ASK1, 335, 337–338
Asthma
effect of PM_{10,2.5}, 10
inflammation and, 277, 278, 340
particulate matter exposure and changes in heart rate variability, 445–446t, 456
Asymmetric dimethylarginine (ADMA), 370
Atenolol, 196
Atherogenesis, 296, 423
direct or secondary effects of particles, 431–432
model to investigate long-term effects of pollution on, 299–300, 299f
particle-induced, 431–432
pathways connecting particulate matter to, 297–298
subclinical end points used to investigate PM effects on, 302–306, 303t
traffic-related noise and, 307, 313
Trojan horse hypothesis, 287–292
Atherogenic effects, of particulates, 251–252
Atheromatous plaque, carbon nanotubes and development of, 538
Atherosclerosis
air pollution and, 295–296, 307–313, 308–309t
air pollution and subclinical, 51–52
assessment of subclinical, 302–306, 303t
CAP exposure and, 207
cardiovascular dysfunction and particle-induced, 428–431
chronic and acute processes, 296–297
C-reactive protein and particle-induced, 427
cytokines and particle-induced, 426–427
endothelial dysfunction and, 379
exposure assessment, 300–302
inflammation and, 274, 275f
initiation of particle-induced, 424
model to investigate pollution effects on atherogenesis, 299–300, 299f
overview, 423–424
oxidative stress and particle-induced, 425
particles enhancing development of, 280–281
particulate matter exposure and, 201–202, 201f
pathways connecting particulate matter and, 297–298
PM$_{2.5}$ exposure and, 12
progression of particle-induced, 425–426
response-to-injury hypothesis of, 424
short-term exposure to air pollution and, 47
systemic inflammatory response and particle-induced, 424–425
tissue factor expression and particle-induced, 427–428
Atherosclerosis Risk in Communities (ARIC) study, 51
Atherosclerotic plaque, 281f
particulate matter and, 289–292, 289f, 326–327
airborne particles incorporated in lipoprotein particles, 290–291, 290t
arrival in alveolar space, 289–290
gulpment of loaded lipids by macrophages, 291–292
postprandial period and lipid bullets, 291
Atherosclerotic plaque destabilization, particulate matter exposure and, 282–283
Atherosclerotic plaque formation
CAP exposure and, 207
carbon nanotubes and, 538
Atherosclerotic plaque progression, PM$_{2.5}$ and, 11
Atherosclerotic plaque rupture
particulate matter and, 274
PM$_{2.5}$ exposure and, 47
Atherothrombosis, particles and pathogenesis of, 421–432, 530
particle-induced atherogenesis, 431–432
particle-induced atherosclerosis in cardiovascular dysfunction, 428–431
particle-induced coronary and peripheral atherosclerosis, 422–423
particle-induced initiation and progression of atherosclerosis, 423–428
ATOFMS. See Aerosol time-of-flight mass spectrometer (ATOFMS)
Atom absorption spectrometry, for chemical composition and morphology analysis, 68
Atomic absorption mass spectrometry (AA-MS), 130, 131t
Atrial arrhythmias, short-term exposure to air pollution and, 47
Attainment plans, by U.S. states, 513–514
Augsburg (Germany), air pollution and elevated blood pressure in, 353, 354t
Autocrine signaling, 321
Autonomic balance, particulate matter-induced effects on, 458, 460
Autonomic nervous system, 442, 450
air pollution effects on, 374
control of cardiovascular system and, 453
increase in blood pressure following PM$_{2.5}$ exposure and, 367–368, 369
particulate matter deposition in lungs and, 351
particulate matter exposure and changes in, 195
Autonomic nervous system, particles and, 441–460
animal studies, 448–449t, 457–460
cardiac death triangle, 452–453, 453f
controlled human exposures and epidemiological evidence, 453–456
particle physicochemistry and, 456–457
respiratory tract sensory receptors, 450–451, 450t
short-term effects on heart rate variability, 443–447t
surrogate parameters for monitoring, 451–452
Average exposure indicator (AEI), 502
Averaging time, in NAAQS, 509
Axial diffusion, of nanoparticles, 110
Bacteria, in particulate matter, 5
Bacterial infection, response to, 332–333
Badimon chamber, 282
BAL. See Bronchoalveolar lavage (BAL)
BEAS-2B, 333
BED. See Biologically effective dose (BED)
Benene as hazard, 486
standards for, 498
Benzo[a]pyrene oxidative stress and, 258
translocation of, 205–206
Berkson measurement error, 246–247
BET, 67
Beta-attenuation monitors (beta gauges), 70–71
Beta counting, 132t
Beta-1 receptors, 459
BH₄, oxidative stress and, 370
Bias, 306–307
Biodiesel, 230
Biodistribution patterns, of nanoparticles, 136–137, 136t, 137t role of protein coating, 137
Biologically effective dose (BED) for fibers, 531 for nanoparticles, 533–534
Biological pathways, short-term exposure to air pollution and, 47
Biomarkers cardiovascular, 186–187, 196–204 systemic, 196–204 vascular, 197t
Biomass, 235
Biomolecules, oxidative damage to, induced by particulates in cells, 260–261
Biopersistence, 534, 537–538
Birth defects, air pollutants and etiology of, 54
Black carbon climate warming and, 516 effect on heart rhythm, 193 heart rate variability and, 186 hypertension and, 372 myocardial infarction and exposure to, 38t, 39t protein oxidation and, 264
Black smoke, 497 myocardial infarction and exposure to, 27t, 37t
Blood circulation translocation of nanoparticles into, 139, 140f, 529–530 translocation of particles into, 384f, 385
Blood coagulability, ambient air particulate matter and, 8
Blood lipids, ambient air particulate matter and, 8
Blue haze, 63
BMPRII, 322
Body mass index, PM₂.₅ exposure, cardiovascular events and, 48–50 Boston CAPs, 191t, 194t, 202
Brachial arterial vasoconstriction, particulate matter exposure and, 187
Brachial artery diameter, effect of PM₂.₅ on, 10
Bradyarrhythmias, ROFA exposure and, 451
Bradycardic responses, to particulate matter, 457–458
Bradykinin, 391f, 395
Brain, nanoparticle retention in, 138t
Breathing flow rate, 112
Bromine, in ultrafine particles, 147t
Bronchial arteries, 320
Bronchial endothelial cells, role in inflammation, 331–333
Bronchitis, pulmonary inflammation and chronic, 340
Bronchoalveolar inflammation, titanium dioxide particles and, 154
Bronchoalveolar lavage (BAL), particle retention and, 133, 133t
Bronchoscopy, in human instillation studies, 233
Bronchovascular bundles, 320
Brownian motion, deposition by, 115 Bubble bursts, 63
Building characteristics, long-term exposure to UFPs and, 95
CAC. See Coronary artery calcification (CAC)
CAD. See Coronary artery disease (CAD)
Cadmium condensation as UFP, 16 standards for, 498 translocation of, 205
CAFE. See Clean Air for Europe (CAFE) program
CAIR. See Clean Air Interstate Rule (CAIR)
Calcium
 in particulate matter, 5
 in ultrafine particles, 146, 147t
Canada air quality standards, 515, 516–517, 516t
Canada-Wide Standards (CWSs), 516–517
Canadian Environmental Protection Act (CEPA), 516
Cancer, nanoparticle exposure and, 525
Cap-and-trade economic instruments, 514, 519–520
CAPs. See Concentrated ambient particles (CAPs)
Capsazepine, 196
Carbon. See also Elemental carbon (EC);
 Organic carbon (OC)
effects on autonomic nervous system balance, 449t
Carbonaceous materials
 in ultrafine particles, 82–83
Carbon-based nanoparticles
 cardiovascular effects of interaction with metal-based nanoparticles, 155
Carbon-based nanoparticles/nanotubules
 cardiovascular effects and, 151–153
Carbon black, 151–152, 528
 blood pressure effects of, 193–195, 194t
 changes in heart rate and, 459
 DNA damage and, 260, 262
 intracellular ROS production and, 254, 255, 256f
 metal-based nanoparticles and, 155
 oxidative damage and, 260
 oxidative stress and, 257
 reduced GSH/GSSG ratio and, 259
 short-term effects on heart rate variability, 443t
 toxicity of, 527
 uptake of oxidized low-density lipoprotein and, 175
Carbon black nanoparticles
 effects on cardiac cells, 177
 pulmonary edema and, 326–327
Carbon dioxide, in gasoline exhaust, 231
Carbon monoxide
 in gasoline exhaust, 231–232
 myocardial infarction and exposure to, 26t, 27t, 28t, 29t, 30t, 31t, 32–34t, 36–39t, 41
 NAAQS for, 508n3
 prothrombin time and, 407
 short-term effects on heart rate variability, 446t, 447t
 traffic-related air pollution and, 50, 92
 ventricular-related air pollution and, 54
Carbon monoxide exposure, 54, 234–235
Carbon monoxide standards, 498
Carbon nanotubes
 multiwalled, 152–153, 531–532
Carbon nanotubes (CNTs), 152–153, 528, 530, 531–532. See also Single-walled carbon nanotubes (SWCNTs)
 atheromatous plaque development and, 538
 as carcinogens, 491
 DNA damage and, 261, 262
 intracellular ROS production and, 254, 256f
 mesothelial cells exposed to, 537, 537f
 oxidative damage and, 263
 protein oxidation and, 260
 P-selectin and, 414–415
 smooth muscle cells and, 177
 thrombogenicity and, 176
 thrombosis and, 198, 326
Carboxyhemoglobinemia, 397
Carcinogens, 329
 genotoxic, 486
 nanomaterials as, 491
Cardiac arrest, particulate matter exposure and, 471
Cardiac cells, 173
 effects of nanoparticles on, 177–178
Cardiac death triangle, 452–453, 453f
Cardiac function
 particle-induced atherosclerosis and, 429
 particulate matter concentrations and, 7
Cardiac pathobiological alterations, induced by particulate matter exposure, 202–204, 203f
Cardiac physiology, in animals, 189–195
 heart rate and heart rhythm, 190–193, 191–192t
Cardiac rhythm, particulate matter exposure and, 189. See also Arrhythmia
Cardiac stress, particulate matter exposure and, 195–196
Cardiomyopathy, long-term exposure to air pollution and, 47
Cardiopulmonary disease mortality, exposure to PM$_{2.5}$ and, 48–50, 49t
Cardiovascular disease-associated susceptibility variations, in animal models, 206–207
Cardiovascular dysfunction, particle-induced atherosclerosis in, 428–431
Cardiovascular effects of particles, 274–276
nanoparticles, in vitro studies, 171–179
neurohumoral influences, 195–196
role of chemical composition in determining, 145–160
carbon-based nanoparticles/nanotubules, 151–153
diesel exhaust particles, 150–151
exposure to ultrafine air pollution particles, 149–150
interactions between carbon-based and metal-based nanoparticles, 155
mechanism of effect, 155–156
metal-based nanoparticles, 153–154
organic compounds, 150–151
surface area, ultrafine particle toxicity, and, 156–160, 158f, 159f
ultrafine air pollution particle characteristics, 145–146
ultrafine air pollution particles elemental composition, 146–149, 147t, 148t
ultrafine particle exposure, 149–150
Cardiovascular health/disease. See also Myocardial infarction
air pollution and, 46f, 55
biomarkers of, 186–187
chronic effects of air pollution on, 45–55
comparison of short-term and long-term exposure effects, 54–55
long-term exposure defined, 47
mortality and cardiovascular events, 48–50, 49t
structural heart diseases, 54, 54t
subclinical atherosclerosis, 51–53
traffic-related air pollution and heart diseases, 50–51
vascular diseases, 53
mechanisms of particulate matter, 188–189, 189f
particulate matter and, 273
relation between heart rate variability and ambient particulate matter and, 454–455
short-term effects of particulate matter on heart rate variability, 446–447t
translocation and, 15
ultrafine and fine particles and, 421
Cardiovascular markers, 196–204, 197t
Cardiovascular morbidity, ambient air particulate matter and, 7–8
Cardiovascular mortality
effect of air pollution on, 23–24, 46f
long-term exposure to nitrogen dioxide and, 50
PM$_{10}$ and, 7
traffic-related air pollution and, 50–51
Cardiovascular physiology, human vs. rodent, 186
Cardiovascular reflex responses, to pollutants, 451
Cardiovascular responses, to PM$_{2.5}$, 9–16
Cardiovascular risk, air pollution and, 288
Cardiovascular system, translocation of nanoparticles to, 529–530
Carotid intima-media thickness (CIMT), 299f, 300
air pollution and, 308t, 309, 311, 312
particulate matter effects on atherogenesis and, 303–304, 303t
PM$_{2.5}$ exposure and, 422, 426
Carotid plaque, 304
Cars, exposure inside, 96
CASAC. See Clean Air Scientific Advisory Committee (CASAC)
Cascade impactor, high-volume, 146
Case-crossover studies, 24, 298
on air pollution exposures and myocardial infarction outcomes, 32–34t
on ICD discharge and particulate pollution, 474–476, 476f
short-term exposure and, 46f, 47
Catalase, 251, 432
Causal associations, characteristics of, 489
CD14, 336
CD39, 381
CD11b HLA expression, 334
CDNPs. See Combustion-derived nanoparticles (CDNPs)

Cell signaling, ultrafine particle/nanoparticle exposure and, 155, 178

Cell type-specific effects, of nanoparticles, 528–529

CEPA. See Canadian Environmental Protection Act (CEPA)

Cerium
translocation of, 205
in ultrafine particles, 146

CFA. See Coal fly ash (CFA)

C-fiber receptors, 450t, 451

C$_{60}$ fullerenes
DNA damage and, 260–261
oxidized biomolecules and, 260
TBARS production and, 254, 255, 256f

Chapel Hill (North Carolina)
elemental composition of ultrafine particles collected in, 146–147, 148t
three-stage virtual impactor, 223–224, 224f

Characteristics of causal associations, 489

Charge, toxicity of nanomaterials and, 493

Chemical composition of particles
cardiovascular effects and, 145–160
carbon-based nanoparticles/nanotubules, 151–153
elemental composition, 146–149, 147t, 148t
interactions between carbon-based and metal-based nanoparticles, 155
mechanism of, 155–156
metal-based nanoparticles, 153–154
organic compounds and diesel exhaust particles, 150–151
particle exposure and, 149–150
surface area and ultrafine particle toxicity, 156–160, 158f, 159f
continuous methods of measurement, 78–80
determining, 220–221
discontinuous methods of measurement, 68
particle toxicity and, 490
ultrafine particles, 82–84, 83f, 84f
Chemokines, particulate matter exposure and, 297

China
air quality monitoring in, 517
cap-and-trade instruments in, 519–520
Chloride, in ultrafine particles, 146
Chlorine, in ultrafine particles, 147
Chromium
oxidative stress and, 255
in ultrafine particles, 146, 147t, 148t
Chronic cardiovascular diseases, effect of air pollution on, 46f
Chronic heart failure, long-term exposure to air pollution and, 47
Chronic inflammatory diseases, particulate matter exposure and, 409

Chronic obstructive pulmonary disease (COPD), 278
effect of PM$_{10-2.5}$, 10
inflammation and, 273, 274
nanoparticle deposition and, 329
nanoparticle exposure and, 525
PM$_{10}$ exposure and blood pressure changes, 429–430
short-term effects of particulate matter on heart rate variability and, 445–446t
susceptibility to particulate matter-induced changes and, 454

Chylomicrons
airborne microparticles incorporated into, 290, 290t
postprandial period, 291

Cigarette smoke, 14. See also Tobacco smoke
atherosclerosis and, 201
effect on autonomic nervous system balance, 449t
effect on eicosanoids, 393
effect on endothelial cells, 177
effect on heart rate, 192t
inflammation and, 199

CIMT. See Carotid intima-media thickness (CIMT)

Clara cell protein 16, 277

Classical measurement error, 246–247
Clathrin-coated pits, 528
Clathrin-mediated endocytosis, 174

Clean Air Act, 508, 512
cap and trade program, 514
Clean Air Act Amendments of 1970, 508–509
Clean Air for Europe (CAFE) program, 499, 500
Clean Air Interstate Rule (CAIR), 515
Clean Air Scientific Advisory Committee (CASAC), 510
Clinical studies
coherence in responses between preclinical studies and, 11–12
on effect of particulate matter on fibrinolysis, 395
on effect of particulate matter on von Willebrand factor, 396
on nanoparticles and vascular injury, 325–326
on particulate matter exposure and endothelin system, 388
on particulate matter exposure and nitric oxide, 390–392, 391f
CLRTAP. See Convention on Long-Range Transboundary Air Pollution (CLRTAP)
CNTs. See Carbon nanotubes (CNTs)
Coagulability, particle-induced changes in blood, 430
Coagulation
inflammation and, 407
regulation by endothelium, 338–339, 338f
Coagulation cascade, 406
Coal fly ash (CFA), short-term exposure to, 11
Coal tar, DNA damage and, 260
Coarse particle (PM$_{10}$) standards in Asia, 520
Canadian, 516–517
European Union, 498, 499, 500–501t, 500–502
U.S., 510, 511t, 512
WHO guidelines for, 500
Coarse particles (PM$_{10}$), 61, 497
all-cause mortality and exposure to, 50
atherosclerosis and, 423, 425
blood pressure changes and, 429–430
cardiopulmonary mortality and, 23
cardiovascular dysfunction and, 428
coarse fraction constituents, 5
composition of, 5
distance from roads and, 91, 91f
effect on intima-media thickness, 53, 54f
hemostasis and, 407–408
hospital admission with arrhythmia and, 472
inhalation of, 276
monitoring, 97, 517
myocardial infarction and, 25, 26–28t, 30–31t, 32–35t, 36t, 40f
relative risk of mortality and short-term exposure to, 54–55
release of cytokines and, 426–427
secondary inorganic aerosols in, 507
short-term effects on heart rate variability, 443t, 444t, 446t
toxicity of, 527
ventricular ectopic beats and, 472
white blood cells and, 12
Cobalt
reduced GSH/GSSG ratio and, 259
ROS generation and, 329
in ultrafine particles, 147t
Cobalt nanoparticles, cytotoxicity of, 175
Cocultures, 173
Coefficient of haze (CoH), 7
CoH. See Coefficient of haze (CoH)
Cohort studies, 241, 298–299, 300, 487, 488–489
Combustion
as source of particulate matter, 4–5
ultrafine particles and, 90
Combustion aerosols, 109
Combustion-derived air pollution, diesel exhaust as model of, 228
Combustion-derived nanoparticles (CDNPs), 146, 525–526
atherothrombosis and, 530
in urban air, 527
Combustion-derived ultrafine particles atherogenic effects of, 280
effect on cardiac cells, 178
Command and control regulations, 518
Commuting, ultrafine particle exposure during, 95, 95f
Compliance, with limit values, 502–503
Compound particles, 151
Concentrated ambient particles (CAPs), 6, 221–227
advantages and disadvantages of using, 227
atherosclerosis and, 201, 201f
atherosclerotic lesion formation and, 326
autonomic nervous system and, 448t, 449t, 459–460
brachial arterial vasoconstriction and, 187
cardiac stress and, 195–196
elevated blood pressure and, 359, 360–362t, 363, 364, 365–366t, 367
gaseous and volatile components of, 226–227
heart rate and, 190
heart rate variability and, 443t, 445t, 454
heart rhythm and, 193
increase in atherosclerotic plaque size and, 530
oxidative effects, 202
plaque formation and, 207
studies, 277
translocation of, 529
VACES, 224–226, 225f
virtual impactor systems, 222–224, 222f, 224f
Controlled exposure studies, on link between particulate matter exposure and hypertension, 359–364, 360–362t
Convective-diffusion equation, 113
Convention on Long-Range Transboundary Air Pollution (CLRTAP), 506, 507
Cooking
indoor air pollution and, 93–94, 235
ultrafine particle exposure and, 96
COPD. See Chronic obstructive pulmonary disease (COPD)
Copper
condensation as UFP, 16
oxidative stress and, 255
role in effect of particulate matter, 13
ROS generation and, 329
in ultrafine particles, 147t, 148t, 254
Coronary artery calcification (CAC)
air pollution and, 54t, 308t, 309t
particulate matter effects on atherogenesis and, 303t, 304, 305
PM$_{2.5}$ exposure and, 426
Coronary artery disease (CAD), long-term exposure to air pollution and, 47
Coronary atherosclerosis, particle-induced, 422–423
Coronary heart disease
effect of particulate matter on heart rate variability and, 455, 456–457
effect of PM$_{2.5}$, 10
effect of PM$_{10}$, 50
proximity to traffic and, 51
Correlation over space, in panel studies, 243–244
Correlation over time, in panel studies, 243
Cost, setting health standards and, 509, 511
Court cases
on air quality standards, 509, 511, 512, 513
on CAIR, 515
COX-2, 334
COX enzymes, 339
CPC. See Condensation particle counter (CPC)
CPCs. See Portable condensation particle counter (CPC)
C-reactive protein (CRP), 200, 282
ambient air particulate matter and, 8
atherogenesis and, 297
C-reactive protein (CRP) (cont’d)
particle-induced atherosclerosis and, 427
ultrafine particle/nanoparticle exposure and increased, 155
Criteria pollutants, 508n3, 509
Cross-community comparisons, 300–301
Cross-sectional studies, 298–299, 300
CRP. See C-reactive protein (CRP)
Crystalline silica particles, 535, 536f
Cunningham slip correction factor, 77, 110, 111
Cupric sulfate and carbon black, cardiovascular effects, 155
Cu/Zn/V factor, in particulate matter, 9
CWSs. See Canada-Wide Standards (CWSs)
CYP isozymes, 333
Cyto centrifuge preparations, 535f
Cytochrome P450, 333
Cytokines
particle-induced atherosclerosis and, 426–427
particulate matter exposure and, 189, 297
pulmonary inflammatory response and, 330
response to AM phagocytosis of particulates, 334
role in cardiac and vascular impairment, 200
ultrafine particle/nanoparticle exposure and, 156
Cytoskeleton, as target for nanoparticles, 528
Cytotoxicity, of carbon nanotubes, 153
Data RAM, 219
Daughter directives, 498
Daunomycin, interaction with gold nanoparticles, 175
DCFH. See under Dichlorofluorescein (DCFH)
DCFH-DA. See
2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA)
D-dimer, particulate matter exposure and, 408–409
D-dimer, particulate matter exposure and, 408–409
Death. See also Mortality
air pollution and arrhythmic, 470–471
cohort studies and risk of, 488–489
Defibrillator discharges, ambient air particulate matter and, 8. See also under Implantable defibrillator device (IDD)
Dendrimers, 174
Dendritic cells, pulmonary inflammatory response and, 330–331, 331f
Denuder, 226
DEP. See Diesel exhaust particles (DEP)
Deposition
by Brownian motion, 115
deposition patterns of spherical nanoparticles in human respiratory tract, 114–120, 114f, 115f, 116f, 117f, 118f, 120f
modeling ultrafine particle, 112–114
multiple-path deposition modeling of ultrafine particles in the lungs, 112–114
semiempirical equations for extrathoracic deposition, 112
of nanoparticles, 110–112
Deposition efficiency equation, 111
Deposition fractions, 122
Desmosomes, 274, 277
Detroit (Michigan), air pollution and elevated blood pressure in, 353, 356t, 358
Dexamethasone, 198
DHE. See Dihydroethidium (DHE)
oxidation assay
Diabetes
air pollution and, 247
nitrogen dioxide and, 373
particulate matter and vascular dysfunction, 430
particulate matter exposure and, 352
PM2.5 exposure effects and, 396
2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), 253
Dichlorofluorescein (CDFH) and carbon black, cardiovascular effects, 155
Dichlorofluorescein (DCFH), oxidation of, 253
Dichlorofluorescein (DCFH) assay, 256f, 262
Dichlorofluorescein (DCFH)-based fluorescence method, 80
Diclofenac, 393
Diesel engine emissions
- changing composition of, 230f
- reduction programs, 514–515
- ultrafine particles from, 63–64
Diesel exhaust exposure facility, 229f
Diesel exhaust particles (DEP), 109
- atherosclerosis and, 201, 201f
- autonomic nervous system effects, 448t
- blood pressure effects, 187, 193–195
- cardiovascular disease and, 202, 203f
- cardiovascular effects, 187–188
 - of organic fraction of, 150–151
- deposition rate of, 276
- DNA damage and, 260, 262
- endothelial cell response to, 176
- fibrinogen responses and, 13–14
- fibrinolysis and, 395
- gasoline exhaust vs., 231
- heart rate effects, 192t
- histamine effects, 413–414, 411f
- in human exposure studies, 227–231
 - advantages and disadvantages, 231
- biodiesel and fuel additives, 230
- idling engine vs. European city cycle, 228–230, 229f, 230f
- inflammation and, 277
 - cellular pathways of, 278–279
 - intracellular ROS production and, 254, 256f
- matrix metalloprotease-1 and, 335
- oxidized biomolecules and, 260
- platelets and, 410
- reduced GSH/GSSG ratio and, 259
- thrombosis and, 325, 413–414
- tissue plasminogen activator and, 431
Diesel soot, in urban air, 527
Diesel-soot-associated benzo[a]pyrene, translocation of, 205
Diesel vehicles, emission levels and number of, 92
Differential mobility analyzer (DMA), 76–78, 77f, 219–220
Differential mobility particle sizer, 78
Diffusion, deposition of nanoparticles in lungs and, 109, 110–112
Diffusion batteries, 68
Dihydroethidium (DHE) oxidation assay, 253
Dimension attribute, 534
Dimethyl arginine, 200–201
5,5-Dimethylpyrroline-N-oxide (DMPO), 253
Diphenhydramine, 414
Discontinuous particle analysis methods, 65
 - for chemical compositions and morphology, 68
 - for mass concentration, 65–67, 66f
 - for number concentration, 68
 - for number size distribution, 68
 - for ROS potential, 68–69
 - for surface area, 67
Dispersion, ambient levels of ultrafine particles and, 90, 103
Distance to traffic routes, particle number concentration and, 91–92, 91f, 102
Donora (Pennsylvania) smog event, 508
Dose-response relationship, 486
DTT. See Dithiothreitol (DTT) assay
Duox, 333
Dva. See Vacuum aerodynamic diameter (Dva)
Dynamic shape factor function, effect on deposition, 119–120, 120f
Dyslipidemia, air pollution and, 288
EANET. See Acid Deposition Monitoring Network in East Asia (EANET)
EAP. See Environment Action Programme (EAP)
Earth Day, 508
EC. See Elemental carbon (EC)
ECG segment alterations, ambient air particulate matter and, 8
ECM. See Extracellular matrix (ECM)
Ecological fallacy, 488
EDRF. See Endothelium-dependent relaxing factor (EDRF)
Effect modification, 488
EGFR. See Epidermal growth factor receptor (EGFR)
Eicosanoid pathways, 397f
Eicosanoids, 393
ELAM-1, 337
Elastic network models (ENMs), 137
Electrical Low Pressure Impactor (ELPI), 67
Electrical mobility particle sizers, 76–78, 77f
Electrometer, 220
Electron energy loss spectroscopy, 132
Electron paramagnetic resonance (EPR), 253
Electron paramagnetic resonance (ESR), 253
Electrostatic precipitation, 68
Elemental carbon (EC)
 blood pressure and, 362t
 cardiovascular effects of particles containing, 187
 in diesel exhaust particles, 150
 health effects, 6
 oxidative stress and, 257
 in ultrafine particles, 4, 82, 83f, 146, 147
Elemental carbon (EC) nanoparticles, biodistribution of, 134–136, 135f
ELPI. See Electrical Low Pressure Impactor (ELPI)
Emission data, 103
Emission inventory, ultrafine particle, 64, 64f
Emission reduction
 in European Union, 505–506t, 506–507 programs, 514–516
Emissions
 ambient levels of ultrafine particles and, 90
 tailpipe, 63–64
Emission standards, 504–506, 514–515
Endocytosis, 174
Endothelial adhesion molecules, upregulation of, 336, 336f
Endothelial caveolae, 337
Endothelial cell protein C receptor (EPCR), 338f, 339
Endothelial cells, 172
 effect of nanoparticles on, 176–177
 effects of nanoparticles on, 335–340, 336f, 338f, 339f
 pulmonary inflammatory response and, 330–331, 331f
Endothelial-derived hyperpolarization factor (EDHFR)-related vasodilation, 394
Endothelial dysfunction
 ambient air particulate matter and, 8
 atherosclerosis and, 424
Endothelial nitric oxide synthase (eNOS), 337, 339, 389
Endothelial pathways, action of inhaled particles on, 385–396, 386f
 vasoconstrictor pathways, 386–389, 387f
 vasodilator pathways, 389–394, 390f, 391f
Endothelial proteins, effect of particulate matter on, 394–396
 fibrinolysis, 394–395
 von Willebrand factor, 395–396
Endothelin (ET), 340
 hypertensive response and, 352
 particulate matter exposure and, 200, 370
Endothelin-1 (ET-1), 339, 340, 386–388, 387f
Endothelin-2 (ET-2), 326
Endothelin (ET) pathway, 386–389, 387f
Endothelin (ET) system, 386–388, 387f
Endothelium, effect of particulate matter exposure on, 198f
Endothelium-dependent relaxing factor (EDRF), 380
Endothelium-dependent relaxing factor (EDRF) pathway, 397f
Endotoxin, particulate matter response and, 333–334
Endotracheal intubation/ventilation exposure, 128t
Energy dispersive X-ray analysis, 68, 132
Enforcement, of air quality regulations in Asia, 518
Engineered nanoparticles, 171
 cytotoxic effect and structural diversity of, 179
 in human exposure studies, 232–233
ENMs. See Elastic network models (ENMs)
eNOS. See Endothelial nitric oxide synthase (eNOS)
Environment Action Programme (EAP), 498
Environmental Health Unit, 223
Environmental nanoparticle aggregates, 109
Environmental Protection Agency, 223
air quality monitors, 53, 472
creation of, 508
Criteria Documents, 487
designating nonattainment areas, 512–513
Human Studies Facility, 146
NAAQS and, 509–510
Environmental regulation, of particulate matter, 497–521
additional metric, 520–521
Asia, 517–520
air quality management/air quality standards, 518–520, 519f
monitoring air pollution, 517–518
Canada, 516–517, 516t
discriminating among particles, 520
European Union, 497–507
abatement policy, 504–507, 505–506t
air quality monitoring, 503–504
compliance with limit values, 502–503
standards for PM2.5, 500–501t, 500–502
WHO evaluations as starting point, 498–500
United States, 507–516
attainment plans by states, 513–514
Clean Air Act Amendments of 1970, 508–509
federal programs to reduce emissions, 514–516
NAAQS, 509–512, 511t
nonattainment areas, 512–513
Environmental tobacco smoke (ETS), pulmonary vascular remodeling and, 323. See also Cigarette smoke; Tobacco smoke
EPCR. See Endothelial cell protein C receptor (EPCR)
Epidemiological studies
coherence in responses between preclinical studies and, 12
design for short-term effects of PM exposure, 24
on link between particulate matter exposure and hypertension, 352–359, 354–357t
study design, 298–300
Epidermal growth factor receptor (EGFR), diesel exhaust particles and increase in, 278
Epigenetic marks, 242
Epigenetic marks, 242
Epiphaniometer, 74
Epithelial cells, alveolar type 1 and type II, 334–335
EPR. See Electron paramagnetic resonance (EPR)
Equations, for extrathoracic deposition, 112
ERK pathway, 278
Error, measuring, 246–247
ERT. See Exposure reduction target (ERT)
Erythrocytes, 172
effect of nanoparticles on, 174–175
E-selectin, 336, 338f, 341
ESR. See Electron spin resonance (ESR)
Esterified cholesterol, 289f, 291
ET. See under Endothelin (ET)
ETS. See Environmental tobacco smoke (ETS)
Eulerian equations of particle transport, 113
European city cycle, 228–230, 229f, 230t
European Union, environmental regulation in, 497–507
abatement policy, 504–507, 505–506t
air quality monitoring, 503–504
compliance with limit values, 502–503
standards for PM2.5, 500–501t, 500–502
WHO evaluations as starting point, 498–500
Evaporation, ambient levels of ultrafine particles and, 90
Exercise-induced ischemia, ambient air particulate matter and, 8
Exercise-induced myocardial ischemia, particulate matter exposure and, 8
Exhaust-associated components, translocation of, 205–206
Exposure
quality of information on, 245–246
reducing misclassification of, 306–307
Exposure assessment, 300–302
in panel studies, 100–101
in time series studies, 97–100, 98t, 99t
for ultrafine particles, 89–103
ambient levels, 90–93, 90f, 91f
exposure, 93–97, 95f
long-term exposures, 102–103
Exposure assessment (cont’d)
 in panel studies, 100–101
 in time-series studies, 97–100, 98t, 99t
Exposure-dose-response paradigm, 126
Exposure reduction target (ERT), 502
Exposure-response relationship, 499
Extracellular matrix (ECM), 289f
Extrapulmonary oxidative stress, 262–263
Extrathoracic deposition, semiempirical equations for, 112
Extrinsic (tissue factor) pathway, 406
Factor IX, 406
Factor VIIa, 406
Factor X, 406
Factor XII, 406
Factor XIII, 406
Familial hypercholesterolemia, 300
Fast Mobility Particle Sizer (FMPS), 74, 78
Fasudil, 371
Fenton reaction, 157
Fenton-type reactions, 68
 generation of ROS and, 255
Ferric chloride, cardiovascular effects and carbon black, 155
Ferrous iron, oxidative stress and, 255–256
Ferrous sulfate and carbon black, cardiovascular effects, 155
Fibers
 biologically effective dose for, 531
 defined, 536
 toxicology of, 536–538
Fiber toxicology structure,    activity paradigm, 536
Fibrinogen
 ambient air particulate matter and, 8
 atherogenesis and, 297
 diesel exhaust particles and increase in, 13–14
 particulate matter exposure and, 282
 PM$_{2.5}$ exposure and elevation of, 9
 ultrafine particle/nanoparticle exposure and increased, 155
Fibrinolysis, effect of particulate matter on, 394–395, 430–431
 clinical studies, 395
 preclinical studies, 395
Fibronectin, 381
Fibrosis, nanoparticle exposure and, 525
FID. See Flame ionization detector (FID)
Financial incentives, for meeting emission standards, 507
Fine particulate matter (PM$_{2.5}$), 4, 497
 abdominal aortic calcification and, 52, 54t, 422
 acute changes in blood pressure in response to short-term, 367–369, 368f
 adequate margin of safety and, 509
 aortic plaque and, 422
 atherosclerosis and, 307, 310
 atherosclerotic aortic lesions and, 425–426
 blood pressure elevation and, 53, 54t, 353, 359, 361t, 363, 372
 cardiovascular disease/dysfunction and, 421, 428
 cardiovascular health effects and, 221–222
 preclinical and clinical studies, 9–16
 carotid intima-media thickness and, 53, 54t, 422
 chronic exposure to, 11–12
 composition of, 4
 chemical, 187
 coronary artery calcification and, 426
 diurnal variability of, 90, 90f
 heart rate variability and, 7, 443–447t, 454, 455
 hemostasis and, 408–409
 life expectancy and reduction in, 441 monitoring levels of, 97, 517
 mortality and, 8–9
 cardiopulmonary, 8, 48, 49t, 51
 myocardial infarction and, 25, 29–31t, 32–35t, 34, 40f
 personal exposure to, 42
 population exposures to, 5–6
 preclinical and clinical studies, 9–16
 pulmonary inflammation and, 425
 Rho/Rho-kinase pathway and, 430
 secondary inorganic aerosols in, 507
 subclinical atherosclerosis and, 51–53
 tissue factor expression and, 427–428
 transport throughout the body, 289–292, 289f
 ventricular arrhythmias and, 474–476, 475f
 ventricular ectopic beats and, 472–473
Fine particulate matter (PM$_{2.5}$) standards, 512
in Asia, 520
Canadian, 516–517, 516t
European Union, 499, 500–501t, 500–502
U.S., 510–511, 511t, 512, 513
WHO guidelines for, 500
Fixed intercept model, 244, 245
Fixed Vs random effects, 244
Flame ionization detector (FID), 221
Flow-mediated dilatation, ambient air particulate matter and, 8
Flow Reynolds number, 111
Fluorescent nanoparticle labeling, 131t
FMPS. See Fast Mobility Particle Sizer (FMPS)
Foam cells, 281f, 297
engulfment of lipids by, 292
Form, in NAAQS, 509
Fossil fuel combustors, 16
Fossil fuels, air quality and, 507–508
FRC. See Functional residual capacity (FRC)
Free cholesterol, 289f, 291
Free radical capacity of ultrafine particles, 277
Free radicals, 155
carbon nanotubes and generation of, 531
nanoparticles and generation of, 155, 528
measuring capacity, 493
ultrafine particles and generation of, 155, 329
Freeway, particle size distributions upwind and downwind from, 63f
Frequency-domain heart rate variability analysis, 452
Fuchs area, 65
Fuchs’ equilibrium charge distribution, 219
Fuchs surface area, 71
Fuel additives, 230
Fullerenes, 151, 174, 528. See also C_{60} fullerene
risks from, 526
uptake of oxidized low-density lipoprotein and, 175
Functional residual capacity (FRC), 114
Gadolinium-fullerenes, thrombogenicity and, 176
Gamma spectroscopy, 131t, 132t
Gap junctions, role in mediating EDHF response, 394
Gaseous components, 226
Gaseous copollutants, monitoring, 221
Gases
exposure to pollutant, 233–235
secondary fine particles from, 5
Gasoline exhaust
atherosclerosis and, 201
diesel exhaust exposure vs., 231
in human exposure studies, 231–232
Gas-to-particle conversion, formation of ultrafine particles and, 62–63
Geiger-Müller counter, 70
Genotoxic carcinogens, 486
Georgia Tech PILS, 78
Glutathione (GSH), 251
ozone exposure and production of, 277
particulate exposure and depletion of, 254, 259, 260
quartz and depletion of, 257
Glutathione peroxidases (GPx)
particulates and generation of, 251
particulates and reduction of, 259
Glutathione reductase, particulate exposure and reduced, 259
Glycopyrrolate, 196
Gold, translocation of, 205
Gold nanoparticles, 131
biodistribution of, 134–136, 135f, 136f
cytotoxic effect, 175
Gold nanorods, effect on cardiac cells, 178
Gothenburg protocol, 506, 507
gp91^{phox}, 330
GPx. See Glutathione peroxidases (GPx)
Granular cells, 172
Granulocyte macrophage colony-stimulating factor, particle-induced release of, 426
Graphene, 531
Gravimetric method, 219
Grimm SMPS, 78
Gro-\(\alpha\), 278, 280
GSH. See Glutathione (GSH)
GSH/GSSG ratio, particulate exposure and reduced, 259
GSTM1, 455
Haber-Weiss reactions, 255
HAECs. See Human aortic endothelial cells (HAECs)
Hageman factor, 406
Halogenated aromatic hydrocarbons, 257
Hard corona, 137
HARNs. See High aspect ratio nanomaterials (HARNs)
Harvard Six Cities study, 8
Hazard
 fiber, 531
 nanoparticle, 531
 risk vs., 486
Hazard assessment, 534–538
 of compact nanoparticles, 534–536, 535f, 536f
 of HARNs, 536–538, 537f
HDLs. See High-density lipoproteins (HDLs)
Health effects
 of nanoparticles, risk assessment of, 121–122
 of particulate matter, 6, 7–9
 current knowledge gaps, 14–16
Healthy subjects, short-term effects of particulate matter on heart rate variability in, 443t
HEAPSS study, 149
Heart, nanoparticle retention in, 138t
Heart diseases, chronic effects of air pollution on structural, 53–54. See also Cardiovascular health/disease
Heart failure
 particulate matter-induced effects on, 455, 459
 short-term exposure to air pollution and, 47
Heart rate
 in animals, 190–193
 particle-induced changes in, 429, 454, 457–460
Heart rate variability (HRV), 7, 186–187
 air pollution and, 247
 frequency-domain analysis, 452
 as measure of arrhythmic susceptibility, 470
 monitoring autonomic nervous system using, 451–452
 particulate matter exposure and, 10, 196, 457–460
 changes in autonomic function, 454–455
 preexisting conditions and, 11
 PM$_{2.5}$ exposure and, 9, 11–12
 short-term effects of particle-containing air pollution on, 443–447t
 time-domain analysis, 452
Heinz Nixdorf Recall Study, 53, 54t, 310
Hematologic change, biomarkers of, 197t
Hemidesmosomes, 275, 277
Hemolysis, 172
 nanoparticles and, 174–175
Hemostasis, 406
 endothelial cells and role in regulation of, 335
 endothelium and, 381
 PM$_{2.5}$ and ultrafine particles and, 408–409
 PM$_{10}$ particles and, 407–408
HEPA filter, 220
Hepatobiliary route, of nanoparticle excretion, 136
Heterocyclic aromatic amines, DNA damage and, 260
Heterogeneous condensation, conversion of nucleation mode to Aitken mode, 62
Hierarchic oxidative stress model, 431–432
High aspect ratio nanomaterials (HARNs), 534, 536–538, 537f
High-density lipoproteins (HDLs), 291
High-performance liquid chromatography, for chemical composition and morphology analysis, 68
High sensitivity C-reactive protein, particulate matter exposure and, 325
Hill, Bradford, 489
Histamine, diesel exhaust particle exposure and, 413–414
HMOX-1, 455
HO-1 induction, 263
Homocysteine levels, air pollution and, 247
Hong Kong
 air quality monitoring in, 517
 cap-and-trade instruments in, 519–520
Hormesis, 487
Hospital admission with arrhythmia, air pollution and, 471–472
Host susceptibility, to particulate matters, 206
Hot spots, 502, 507
HRV. See Heart rate variability (HRV)
INDEX 563

Human aortic endothelial cells (HAECs), 329
Human exposure studies, 217–235
biomass, 235
concentrated ambient particles, 221–227
gaseous and volatile components, 226–227
VACES, 224–226, 225f
virtual impactor systems, 222–224, 222f, 224f
diesel exhaust exposure, 227–231
advantages and disadvantages, 231
biodiesel and fuel additives, 230
idling engine vs. European city cycle, 228–230, 229f, 230f, 230t
exposure monitoring, 218–221
exposure to pollutant gases, 233–235
gasoline exposures, 231–232
human instillation studies, 233
on link between particulate matter exposure and hypertension, 352–364
controlled exposure studies, 359–364, 360–362t
epidemiological studies, 352–359, 354–357t
pure and engineered nanoparticles, 232–233
“real-world” studies, 217–218
requirements, 218
Human instillation studies, 233
Humans
cardiovascular physiology, 186
environmental particulate-induced oxidative stress in, 263–264
extrapolation of risk from animal studies, 486–487
particulate matter-mediated effects on autonomic nervous system, 453–456
susceptibility to particulate matter-induced autonomic nervous system changes, 454–456
Humidity
air pollution and, 99t
ultrafine particles and, 93
Hydrogen ion
in fine mode particulate matter, 4
role of, 15
Hydrogen peroxide
iron and production of, 157
reduction of, 255–256
Hydroxyl radical, 256
Hypertension
particulate matter and, 351–375
animal studies, 364–367, 365–366t
biological mechanisms and pathways, 367–371, 368f
controversies, 371–373
health implications, 374–375
human studies, 352–364, 354–357t, 360–362t
metabolic syndrome, 373–374
PM2.5 exposure and, 12
pollutants and, 451
ICAM. See under Intracellular adhesion molecule (ICAM)
ICD. See Implantable defibrillator device (ICD)
ICP-MS. See Inductively coupled plasma mass spectrometry (ICP-MS)
ICRP model, 72f
IDEAL model, 112–114, 114f, 115, 115f, 118–119, 118f, 120–121, 121f, 122
Idling engine, diesel exhaust from, 228–230
IFN-γ secretion, 339
IL-1, 177
IL-4, 333
IL-6, 152, 187, 200, 279, 280, 282, 332, 334, 337, 338f, 373, 406, 411, 426, 427
IL-8, 9, 278, 280, 328, 334, 335, 426
IL-12, 332
IL-13, 278, 333
IL-1α, 338f, 341
IL-1β, 334, 336, 337, 426
Impaction plates, 66, 66f samples on, 78
Impaction principle, 66
Implantable defibrillator device (ICD), 469
Implantable defibrillator device (ICD) studies, 473–479
coexisting pollutants, 479
exposure estimates, 478–479
ICD discharge and ambient particulate pollution, 474–477, 475t, 476f
nonsustainable arrhythmias, 478
publication bias, 479
statistical power, 477–478
Incense, ultrafine particle exposure and burning, 96
Indicator, in NAAQS, 509
Indomethacin, 394
Indonesia, air quality management in, 518
Indoor air pollution, 5, 235
assessing exposure, 301
exposure to ultrafine particles, 94–96, 95f, 101
sources, 42
Indoor-to-outdoor (I/O) ratio, 5–6, 94
Inductively coupled plasma mass spectrometry (ICP-MS), 130, 131t
Infiltration factor, 94
Inflammation
airway, 273
biomarkers, 197t
carbon black particles and, 151–152
cardiovascular effects of inhaled particles and, 274–276
cellular pathways of, 278–279
cogulation and, 407
as consequence of particle inhalation, 276–277
endothelium and, 381–382
metal-based nanoparticles and, 154
microvascular, 328
nanoparticle exposure and, 154, 155–156, 529–530
oxidative stress and, 251
particulate matter exposure and systemic, 199–200
plaque destabilization and thrombus formation and, 282–283
role in atherogenic effects of particulate matter, 273–278
ultrafine particle exposure and, 150, 155–156
zinc ultrafine particles and, 158–159
Inflammatory markers
atherosclerosis and, 274
particulate exposure and, 199–200
In-liquid samplers, 78
Inorganic ions, in ultrafine particulate matter, 4
Inorganic particulate matter components, oxidative stress and, 10
Insulin receptors, 337
Insulin resistance, 373–374
particulate matter exposure and, 352
PM$_{2.5}$ and, 11
Intermediate-density lipoproteins, airborne microparticles incorporated into, 290t
Internalization of particles, 173–174
Interstitial edema, 325
Interstitial fluid, 320
regulation of, 324
Intima media thickness, air pollution exposure and, 53, 54t
Intracellular adhesion molecule (ICAM), 336, 382
Intracellular adhesion molecule (ICAM)-1, 278, 279, 280, 325, 332, 337, 338f, 341
Intraesophageal aspiration of particles, 129t
Intranasal instillation of particles, 129t
Intratracheal instillation route, 534–535
Intratracheal intubation/ventilation exposure, 127, 128t
Intrinsic (contact) pathway, 406
In vitro toxicology studies, 171–179
experimental studies, 174–178
effects of nanoparticles in vascular smooth muscle cells, 177
effects of nanoparticles on cardiac cells, 177–178
effects of nanoparticles on cell signaling, 178
effects of nanoparticles on endothelial cells, 176–177
effects of nanoparticles on erythrocytes, 174–175
effects of nanoparticles on leukocytes, 175
effects of nanoparticles on platelets, 176
Iodine oxide, 63
I/O ratio. See Indoor-to-outdoor (I/O) ratio
Iridium nanoparticles, 133–134
biodistribution of, 134–136, 135f
retention time for, 137–138, 138t
Iridium oxide, 138–139
Iron
in particulate matter, 5
oxidative stress and, 255–256, 257
ROS generation and, 329
in ultrafine particles, 146, 147, 147t, 148t, 254
toxicity of, 156–157
Lung disease, short-term effects of particulate matter on heart rate variability and, 445–446

Lung inflammation
 carbon black and, 152
 ultrafine particle/nanoparticle exposure and, 155, 156

Lung instillation studies, role of components, 12–13

Lungs
 deposition of nanoparticles in, 109, 526t
 multiple-path deposition modeling of ultrafine particles in, 112–114
 nanoparticle retention in, 138t
 particle retention and relocation pathways within, 133–134, 133t
 toxic response to particulate matter in, 189, 189f
 translocation of nanoparticles from, 529–530

Lung toxicity, chemical composition of ultrafine particles/nanoparticles and, 156–160

Lung ventilation, particle deposition and, 117–118

LVM. See Left ventricular mass (LVM)

Lysis, erythrocyte, 172

Macrosomeric methods of nanoparticles, in organs and tissues, 130–131

Macrophage inflammatory protein (MIP)-1, 334, 341

Macrophage-neutrophil cross talk, 414, 416f

Macrophages, 126
 alveolar, 535, 535f
 engulfment of loaded lipids by, 291–292
 monocyte-derived, 424
 nanoparticle retention and, 132–134, 133t
 necrosis of, 292
 particle internalization and, 173
 PM2.5 infiltration of, 11
 pulmonary inflammatory response and, 330–331, 331f
 reponse to diesel particles, 279

Macropinocytosis, 174

Magnesium, in ultrafine particles, 146, 147, 147t

Magnetic nanoparticle labeling, 131t

Male Declaration on Control and Prevention of Air Pollution and Its Likely Transboundary Effects for South Asia, 518

Malondialdehyde (MDA) content
 oxidative stress and, 263, 264
 particulate exposure and, 259–260

Manganese, in ultrafine particles, 147t

Manufactured nanoparticles
 adverse effects, 526–528
 carbon nanotubes, 531–532
 risks from, 526
 titanium dioxide, 532–533

MAP. See under Mitogen-activated protein (MAP)

MAPK. See under Mitogen-activated protein kinase (MAPK)

MARCO, 334, 528

Marga system, 78

Margin of tolerance, 504

Mass concentration
 continuous methods of measurement, 69–71
 beta-attenuation monitor, 70–71
 TEOM, 69–70
 discontinuous methods of measurement, 64–65, 65–67
 cascade impactors, 66–67, 66f

Mass spectrometry, aerosol time-of-flight, 220–221

Mast cells, response to particulate matter, 278, 280

Material dependency, of nanoparticle biokinetics, 134

Matrix metalloprotease-1, diesel exhaust particles and, 335

Matrix metalloproteinases (MMPs), particle exposure and, 282

mCD14 HLA expression, 334

MCP. See Monocyte chemoattractant protein (MCP)

MDA. See Malondialdehyde (MDA) content

MDMs. See Monocyte-derived macrophages (MDMs)

Measurement techniques for ultrafine particles, 64–65

Mechanistic hypotheses, for pathway of particulate matter influence of cardiovascular system, 383–385, 384f
Mediator release, ultrafine particle/nanoparticle exposure and, 155
Membrane reactor, 80
MESA. See Multi-Ethnic Study of Atherosclerosis (MESA)
Mesothelioma, 537
Mesothelium
exposed to carbon nanotubes, 537, 537f
as target for fibers and carbon nanotubes, 532
Metabolic syndrome
air pollution and risk of, 373–374
particulate matter exposure and, 6, 352
Metabolism, microvascular, 328
Metal-based nanoparticles, cardiovascular effects, 153–154, 155
Metallothioneins, 158
Metal oxides, 528
risks from, 526
Metal processing-related genes, air pollution and, 247
Metals
autonomic nervous system and
particulate-associated, 448t, 449t, 456
biological effects of, 158–159
cardiac alterations and particulate matter-associated, 202
in diesel exhaust, 150, 228
particulate matter-associated effects, 13, 204
short-term effects on heart rate variability, 444–445t
translocation of, 205
in ultrafine particles, 83f
Meteorological conditions
ambient levels of ultrafine particles and, 90, 91, 93
concentrated ambient particles and, 227
ultrafine particle concentrations and, 99–100, 99t
Microalbuminuria, air pollution and incidence of, 309t, 311
Microdosimetric methods of inter- and intracellular nanoparticle
distribution, 132
Micron-sized particles (MPs), 126
Micro-Orifice Uniform Deposit Impactor (MOUDI), 67, 219
Micropinocytosis, 337
Microvascular metabolism and inflammation, 328
MIP-1. See Macrophage inflammatory protein (MIP)-1
Mitochondrial damage, particle-induced, 258
Mitogen-activated protein kinase (MAPK) diesel exhaust particles and increase in, 278
oxidative stress and, 251
Mitogen-activated protein kinase (MAPK) pathway, nanoparticles and, 178
Mitogen-activated protein (MAP) kinase-activated AP-1 transcription pathway, 334
Mitral valve regurgitation, long-term exposure to air pollution and, 47
Mixtures, effects of, 487
MMPs. See Matrix metalloproteinases (MMPs)
Mobility analyzer, 76
Modeling, to assess air quality, 504
Molecular alterations, induced by particulate matter exposure, 201–204, 201f, 203f
MONICA survey, 427, 430
Monocrotaline model, 323
Monocyte chemoattractant protein-1, 200
particle-induced release of, 426, 427
Monocyte chemoattractant protein (MCP), 341
Monocyte-derived macrophages (MDMs), 424
Monocytes
atherogenesis and increase in bone marrow, 297
PM_{2.5} exposure and increased, 9
pollution-induced migration of, 280, 281f
Monte Carlo transport and deposition model, 113–114
Morbidity, particulate matter and, 3–4
Mortality. See also Cardiovascular mortality; Death; Pulmonary mortality
air pollution and, 3–4, 273
ambient air particulate matter and annual, 8
daily, 8
PM_{2.5} exposure and, 441
PM_{10} exposure and all-cause, 50
Motor vehicle exhaust, role in effect of particulate matter, 13
MOUDI. See Micro-Orifice Uniform Deposit Impactor (MOUDI)
Mouse model, plaque formation and long-term exposure to CAPs, 207
Mouth breathing, deposition studies and, 120–121
MPPD. See under Multiple-path particle dosimetry (MPPD)
MPs. See Micron-sized particles (MPs)
Mt. St. Helens volcanic ash, 13
effects on autonomic nervous system balance, 448t
Multi-Ethnic Study of Atherosclerosis (MESA), 52–53, 54t, 311–312, 353, 372
Multiple-path deposition modeling, of ultrafine particles in lungs, 112–114
Multiple-path particle dosimetry (MPPD), 112–113, 122
Multiple-path particle dosimetry (MPPD) model, 116f, 121
Multiple sclerosis, particulate matter exposure and, 12
Multiwalled carbon nanotubes (MWCNT), 152–153, 531–532
Muscarinic receptor antagonists, 459
MWCNT. See Multiwalled carbon nanotubes (MWCNT)
Myocardial ischemia, short-term exposure to air pollution and acute, 47–48
Myocardial substrate, 453, 453f
NAAQS. See National ambient air quality standards (NAAQS)
N-acetylcysteine, 257
NADPH oxidase, 337
generation of ROS and, 258
particulates and, 251, 252f
PM$_{2.5}$ and, 370
NADPH-reduced oxidase, ROS generation and, 330
Nanocrystals (NCs), 109, 456
Nanofibers, 492
Nanolayers, 109
Nanomaterials
carcinogenicity of, 491
manufactured, 109
toxicity of, 110, 492–494
NanoMOUDI, 67
Nanoparticle (NP), 61, 109–110. See also Combustion-derived nanoparticles (CDNPs); Manufactured nanoparticles; Ultrafine particles (UFP) administration to laboratory animals, 127–129, 128–129t
alveolar macrophages and, 333–334
atherogenesis and, 276, 280–281
biokinetics, 125–126, 126f, 130–131, 130f, 134–137
long-term, 138, 138t
biologically effective dose for, 533–534
carbon-based, cardiovascular effects and, 151–153
cardiac cell effects, 177–178
cell signaling effects, 178
at the cellular level, 528–529, 529f
compact, 534–536, 535f, 536f
comparison of theoretical predictions with experimental data, 120–121, 121f
deposition patterns of spherical, in human respiratory tract, 114–120, 114f, 115f, 116f, 117f, 118f, 120f
endothelial cell effects, 176–177, 335–340, 336f, 338f, 339f
engineered, 171, 179, 232–233
in human exposure studies, 232–233
erthrocyte effects, 174–175
gold, 131
as hazard, 486
in human exposure studies, 232–233
leukocyte effects, 175
lung deposition of ambient, 526
macrososimetric methods, 130–131, 131–132t
microdosimetric methods, 132
particle number and health risk, 121–122
physical transport and deposition mechanisms, 110–112
platelet effects, 176
pulmonary macrovascular function and, 321–323
pulmonary vascular injury and effect of chemical NP composition on, 328–330
implications of, 324–327
mechanisms of, 327–330
vascular injury studies, 325–327
pulmonary vasculature effects, 319–342
cell-specific responses, 330–340, 331f, 336f, 338f, 339f
unifying hypotheses, 340–341
respiratory microvascular function and, 323–324
retention and relocation pathways within lungs, 133–134, 133t
role in induction of ICAM, VCAM, ELAM-1, 337
toxicity of, 528–529
translocation of, 125–141, 126f, 160, 188–189, 384f, 385, 534
biokinetics of selected nanoparticles, 135–137, 135f, 136t, 137t
extrapolation of single dose to chronic exposure, 139–141, 140f
long-term biokinetics, 138, 138t
methodology to quantify, 127–132, 128–129t, 130f, 131–132t
particle retention and relocation pathways within lungs, 133–134, 133t
ultrafine particles and, 109
vascular smooth muscle cell effects, 177
Nanoparticle (NP) aggregates, diffusion of, 111
Nanoparticle (NP) dosimetry, 127–140
Nanoparticle Surface Area Monitor (NSAM), 71, 72–73, 73f, 220
particle surface area concentrations from Los Angeles, 81, 82f
Nanoparticokinetics, 529–530
Nanotechnology, 527–528
Nanotoxicology, 526–528
Nanotubes
deposition in lower respiratory tract, 109
risks from, 526
toxicity of, 492
Nanotubules, carbon-based, cardiovascular effects and, 151–153
Nasal cavity, 320, 323
Nasal inhalation, nanoparticle deposition during, 114–119, 114f, 115f, 116f, 117f, 118f
National ambient air quality standards (NAAQS), 508, 509–512, 511t
challenges to, 509, 511, 512
National emission ceilings, 506–507
National Morbidity, Mortality, and Air Pollution Study (NMMAPS), 23
Natural sources, compliance with limit values and, 502–503
Navier-Stokes equation, 223
NBT. See Nitroblue tetrazolium (NBT)
NCs. See Nanocrystals (NCs)
Nd:YAG ablation/ionization laser, 221
NEC directive, 507
Nephelometric monitors, 219
Nerve endings, particulate matter exposure and stimulation of, 189
Netherlands Cohort study, 49t, 51
Neurohumoral influences, in cardiovascular effects of particulate matter, 195–196
NF. See under Nuclear factor (NF)
NHANES III, 12
Nickel
in particulate matter, 6
reduced GSH/GSSG ratio and, 259
role of, 13, 14
ROS generation and, 329
translocation of, 205
in ultrafine particles, 4, 16, 147t, 148t
Nickel CAPs, pulmonary inflammation and, 204
Nickel nanoparticles
cytotoxicity of, 175
lung injury and, 154
Nickel standards, 498
Nickel sulfate exposure, effect on heart rate, 192t
Nitrate
in diesel exhaust particles, 150
national ceilings for, 506
role of, 15
short-term effects on heart rate variability, 443t
in ultrafine particles, 82, 83, 83f, 84f, 146, 147
U.S. standards, 511
Nitrate ion, in fine mode particulate matter, 4
Nitric oxide
effect of particulate matter on, 389–393, 390f, 391f
emissions, 63
enhanced production of, 258–259
oxidative stress and, 251, 425
particulate matter exposure and, 200–201
pulmonary macrovascular function and, 322
pulmonary vascular tone and, 339–340
regulation of vascular tone and, 380–381
short-term effects on heart rate variability, 446t, 447t
vascular and endothelial dysfunction and, 430
Nitric oxide pathway, 397f
Nitric oxide synthase (NOS), 330, 337, 389, 392
Nitroblue tetrazolium (NBT), reduction of, 253
Nitro-derivatives, of PAH, 257
Nitrogen dioxide, 233–234
assessing exposure to, 302
cardiovascular events and long-term exposure to, 48
cardiovascular mortality and long-term exposure to, 50
diabetes and, 373
distance from road and levels of, 92
health risk of, 3
hospital admission with arrhythmia and, 472
implantable defibrillator device discharge and, 474, 479
myocardial infarction and exposure to, 26t, 27t, 29t, 30t, 31t, 32–34t, 36–39t, 41
prothrombin time and, 407
proximity to traffic and exposure to, 51
standards, 498
Nitrogen monoxide, vascular dysfunction and, 383
Nitrogen oxides (NOx). See also Nitric oxide; Nitrogen dioxide
assessing, 221
in diesel exhaust, 228, 230, 230f
national ceilings for, 506, 507
reduction of emissions, 514–515
road traffic and, 50
ultrafine particles and, 100
Nitrous acid, 63
NMMAPS. See National Morbidity, Mortality, and Air Pollution Study (NMMAPS) σN intervals, 452
Nonattainment areas, designating, 512–513
Nongranular cells, 172
Nonsustained arrhythmias, 478
Nuclear factor (NF)-κB, 335
oxidative stress and, 251
particulate matter and activation of, 278
toll-like receptor signaling and, 332
Nuclear factor (NF)-κB pathway, nanoparticles and, 178
Nuclear factor (NF)-κB-related genes, particulate matter and, 432
Nucleation, 5
of emissions, 92
Nucleation mode, 4
size, 62, 62f
Nuisance dusts, 527
Number concentration
- continuous methods of measurement, 75–76
- condensation particle counter, 75–76
- discontinuous methods of measurement, 68
- short-term effects of particulate matter on heart rate variability and, 446t, 447t

Number size distribution
- continuous methods of measurement, 76–78
- electrical mobility particle sizers, 76–78, 77f
determination of surface area concentration from, 74–75, 74f
- discontinuous methods of measurement, 68

Nurses’ Health study, 49t, 50, 55

Observational studies
- on ambient air pollution and vascular function, 383
- limitations of, 42

OC. See Organic carbon (OC)

Occupation/occupational exposure
- short-term effects of particulate matter on heart rate variability and, 444–445t
- ultrafine particle exposure and, 96–97

Odds ratio, background air pollution, 51

Oil combustion particulate matter, effect on heart rate, 190

Onset Study, 25, 34

Oral inhalation, nanoparticle deposition during, 114–118, 114f, 116f, 117f, 118f, 120–121

Orbital blood flow velocity, particulate matter effects on atherogenesis and, 305

Organic carbon diesel soot particles, deposition rate of, 276

Organic carbon (OC)
- blood pressure and, 363
- cardiovascular effects of particles containing, 187
- in diesel exhaust particles, 150
- in ultrafine particles, 4, 82–83, 83f, 147

Organic compounds
- in diesel exhaust particles
 - cardiovascular effects, 150–151
- in ultrafine particles, 146

Organic fraction of particulates, oxidative stress from, 257–258

Organics, role of, 15

Organs
- analysis following particle administration, 127–129
- extrapolation of nanoparticle accumulations from single dose to chronic exposure, 139–141, 140f
- macromodisometric methods of nanoparticles in, 130–131, 131–132t
- portal entry and nanoparticle deposition, 135–137, 136t, 137t
- Ottawa ambient particles (EHC-93), effects on autonomic nervous system balance, 448t

Outdoor exposures, as proxies for personal exposure, 97–99, 98t

Outdoor-originating indoor ultrafine particles, 99, 101

Oxidants, 331–332
- cardiac oxidative stress and, 459–460
- ultrafine particles and generation of, 157

Oxidation of dichlorofluorescein, 253

Oxidative capacity, of ultrafine particles, 277

Oxidative effects
- of diesel exhaust particles, 277
- of ultrafine CAPs, 149

Oxidative pathways, nanoparticle-induced toxicity and, 327

Oxidative stress, 251–265, 252f
- adaptive response to, 264
- ambient air particulate matter and, 8
- antioxidant depletion by particulates, 259–260
- assessment of particulate oxidation potential, 253–255
- atherosclerosis and particle-induced, 425
- autonomic nervous system and particle-induced, 455
- biomarkers, 197t
- blood pressure elevation and, 370 defined, 251
diesel exhaust particles and, 150–151
in experimental models, 261–263, 262f
extrapulmonary, 262–263
hierarchic oxidative stress model, 431–432
Oxidative stress (cont’d)
in humans exposed to environmental particulates, 263–264
increase in blood pressure and, 369
nitric oxide and, 389–390, 391–392
from organic fraction of particulates, 257–258
oxidative damage to biomolecules induced by particulates in cells, 260–261
particle-induced ROS and, 68, 258–259
particulate matter exposure and, 199–200
cardiac, 195–196
PM$_{2.5}$ and, 10, 11, 12
quinones and, 150–151
resulting from transition metals contained within particles, 255–256, 256f
ROS pathway activation and, 369
surface reactivity and, 256–257
TP1, TP2 and metals and, 13
Oxidative stress hypothesis, 529f
Oxidative stress-related genes, air pollution and, 247
Oxidized low-density lipoprotein carbon black and fullerenes and increase of uptake of, 175
nanoparticle-induced uptake of, 176
8-OxodG, 257, 259, 262, 263
Oxygen-containing functional groups, 157
Oxygen-generated PAH, 257
Oxygen saturation, air pollution and, 247
Ozone, 234
adequate margin of safety and, 509
congenital heart disease and, 53
consumption of antioxidants and, 277
ectopic beats and, 473
effect on endothelin metabolism, 200
health risk of, 3
myocardial infarction and exposure to, 26t, 27t, 29t, 30t, 31t, 32–34t, 36–39t, 41
NAAQS for, 508n3
short-term effects on heart rate variability, 443t, 446t
standards, 498
Ozone and CAP exposure, blood pressure and, 363
P450, 333
PAD. See Peripheral arterial disease (PAD)
PAHs. See Polycyclic aromatic hydrocarbons (PAHs)
PAI-1. See Plasminogen activator inhibitor-1 (PAI-1)
Pakistan, air quality management in, 518
Panel studies, 241–247, 298
analytical methods, 243–245
defined, 241
exposure assessment in, 100–101
exposure considerations, 245–247
limitations of, 473
methodological considerations, 241–242
Paracrine signaling, 320, 321
Parasympathetic nervous system, particles and, 442
PARs. See Protease-activated receptors (PARs)
Particle administration methods, 127–129, 128–129t
Particle characterization, 61–84
chemical compositions analysis continuous methods, 78–80, 79f
chemical compositions and morphology measurement discontinuous methods, 68
mass concentration measurement continuous methods, 69–71
discontinuous methods, 65–67, 66f
measurement techniques, 64–65
number concentration measurement continuous methods, 75
discontinuous methods, 68
number size distribution measurement continuous methods, 76–78, 77f
discontinuous methods, 68
physical and chemical particle characteristics, 80–84, 81f, 82f, 83f, 84f
ROS potential measurement continuous methods, 80
discontinuous methods, 68–69
sources of ultrafine particles, 61–64, 62f, 63f, 64f
surface area measurement continuous methods, 71–75, 72f, 73f, 74f
discontinuous methods, 67
Particle charger, 76
Particle concentration, in airways of lungs, 113
Particle counting device, 76
Particle density, cascade impactors and, 66
Particle filter traps, 507
Particle inhalation, consequences of, 276–277
Particle-into-liquid sampler (PILS), 80
Particle monitoring, 218–221
Particle number, 65
 health effect risk and, 121–122
Particle number concentration (PNC), 15, 80–81, 81f, 89
 distance to traffic routes and, 91–92, 91f
 myocardial infarction and exposure to, 34, 35, 36t
 ultrafine particles and, 97
Particle physicochemistry, relevance for effect on autonomic nervous system, 456–457
Particles
 Eulerian equations of transport of, 113
 internalization of, 173–174
Particle size, pulmonary microvascular endothelial function and, 329
Particle size fractions, autonomic nervous system and, 456–457
Particle surface area, health effect risk and, 122
Particle surface area concentrations, 81–82, 82f
Particle toxicology, chemical composition and, 490
Particulate matter (PM). See also Coarse particles (PM_{10}); Fine particulate matter (PM_{2.5}); Ultrafine particles (UFP)
 acute short-term effects on risk of myocardial infarction (See Myocardial infarction)
 air pollution and, 287–288
 arrhythmia and, 469–470
 arrhythmic death and, 470–471
 atherosclerosis and, 297–298, 424–425
 atherosclerotic plaque formation and, 289–292, 289f, 290t
 blood pressure changes in response to, 187, 193–195, 194t, 369–371
 cardiac pathobiological and molecular alterations induced by, 202–204, 203f
 cardiovascular contractility and, 198f
 cardiovascular disease and, 273
 cardiovascular effects, 274–276
 neurohumoral influences, 195–196
 causative components, 204–206
 coronary and peripheral atherosclerosis and, 422–423
 environmental regulation of (See Environmental regulation)
 federal programs to reduce emissions, 514–516
 health risk of, 3
 heart rate variability and, 186, 190–193, 191–192t
 hospital admission with arrhythmia and, 471–472
 host susceptibility to, 206
 hypertension and, 351–375
 animal studies, 364–367, 365–366t
 biological mechanisms and pathways, 367–371, 368f
 controversies, 371–373
 health implications, 374–375
 human studies, 352–364, 354–357t, 360–362t
 metabolic syndrome, 373–374
 inability to standardize exposures with real-time ambient, 185–186
 less than 10μm in aerodynamic diameter, 4
 mechanisms of cardiovascular health effects, 188–189, 189f
 mortality and morbidity and, 3–4
 NAAQS for, 508n3
 need for new metric for, 520–521
 number concentration of, 15
 oxidation potential of, assessing, 253–255
 oxidative stress and, 251–252, 416f
 pathways connecting atherosclerosis and, 297–298
 penetration indoors, 5–6
 platelets and, 409–410
 proinflammatory and procoagulant effects, 415–416, 416f
 pulmonary inflammation and, 415
 role of components, 12–14
 role of vascular dysfunction in health effects of, 200–201
 ROS generation and, 432
Particulate matter (PM) (cont’d)
size and sources of, 4–5
sources and components, 4–5, 187–188, 504, 505t
standards, 498
thrombogenesis and platelet activation
and, 412–415
thrombosis and, 198–199
translocation scenario, 415
vascular pathological and molecular
alterations induced by, 201–202, 201f
Particulate matter (PM)7, myocardial
infarction and exposure to, 34
Particulate matter (PM)-induced cardiac
vagal plasticity, 195
Peak expiratory flow rates (PEFRs), particle
number concentration and, 15
PECAM, 338f
Peclet number, 110, 111–112
Pedestrians, ultrafine particle exposure
and, 95, 96
PEFRs. See Peak expiratory flow rates
(PEFRs)
Penetration factors, 94, 95
Peripheral arterial disease (PAD)
air pollution and prevalence of, 308t, 311
ankle-brachial pressure index and
prevalence of, 305
traffic exposure and, 53
Peripheral atherosclerosis,
particle-induced, 422–423
Peroxides, airborne, 16
Peroxyxnitrate, 389
Personal behavior, variation in ultrafine
particle exposure, 94–95, 98
Personal confounding factors, 489
Personal pollutant exposure, 478–479
assessing, 302
outdoor exposure as proxy for, 97–99, 98t
Personal pollutant exposure monitors, 246
Personal ultrafine particle
monitoring, 100–101
Pertechnetate, 412
PGI2. See Prostacyclin I2 (PGI2)
Philippines, air quality management in, 518
Phosphate-buffered saline, 535
Photochemical reaction sequences, 16
Photochemistry, 93
Physical activity, effect on lung
deposition, 114–115, 115f, 118–119, 118f
Physical particle characteristics, 80–84
particle number concentrations, 80–81, 81f
particle surface area
concentrations, 81–82, 82f
Physical structures, ultrafine particle
congestion and, 92
Physical transport, of
nanoparticles, 110–112
Physicochemical parameters, of
nanoparticles, 134–135
PI3 kinase, 278
PILS. See Particle-into-liquid sampler
(PILS)
Pittsburgh (Pennsylvania) supersite,
elemental composition of ultrafine
particles collected at, 147
Plaque. See under Atherosclerotic plaque
Plasma fibrinogen, ambient air particulate
matter and, 8
Plasminogen
effect of particulate matter on, 10
PM2.5 exposure and, 11–12
Plasminogen activator inhibitor-1
(PAI-1), 395
particulate matter exposure and, 199, 325, 409
Platelet-activating factor, 338f, 381
Platelet activation
effect of particulate matter on, 412–415
endothelium and, 381
in pulmonary microvascular
endothelium, 336
Platelet aggregation, air pollution and,
407–408, 410
Platelet-derived growth factor, 337
Platelet function analyzer (PFA-100), 413
Platelets, 172
effect of nanoparticles on, 176
particles and, 409–410
Platinum nanoparticles, 153–154
PM. See Particulate matter (PM)
PM0.1. See Ultrafine particles (UFP)
PM2.5. See Fine particulate matter (PM2.5)
PM10. See Coarse particles (PM10)
p53-mediated pathway, 335
PMNs. See Polymorphonuclear leukocytes (PMNs)
PNC. See Particle number concentration (PNC)
Pneumoconiosis, nanoparticle exposure and, 525
pNN50, 452
Poisson regression model, 24
Pollen, in particulate matter, 5
Pollutant gases
effect on heart, 458–459
exposure to, 233–235
Pollutants, criteria for, 508n3, 509
Polycyclic aromatic hydrocarbons (PAHs), 146, 491
205
in diesel exhaust, 150, 228, 277
effect of, 13
endothelial cell response to, 176
in nanoparticles, 329
nitro-derivatives, 257
oxidative stress and, 257–258
oxygen-generated, 257
ROS and, 68, 329–330
as source of free radicals, 493
standards for, 498
in ultrafine particles, 254
Polymorphonuclear leukocytes (PMNs), 9–10, 336, 414, 425, 426, 535f
Polystyrene-divinylbenzene (XAD) denuders, 226
Polystyrene-divinylbenzene (XAD) resin, 226
Polystyrene ultrafine particles, 412–413
n-e Polyunsaturated fatty acids (PUFAs), 455
Poorly soluble particulates (PSPs), 532
Portable air cleaners, 94
Portable condensation particle counter (CPC), assessing true ultrafine particle exposure using, 100–101
Positive matrix factorization, 100
Potassium
in particulate matter, 5
in ultrafine particles, 146, 147, 147t
P-38 pathway, 278
p53 pathway, nanoparticles and, 178
PPH, 253
p47phox, 330, 337
Preclinical studies
cohherence in responses between clinical studies and, 11–12
cohherence in responses between epidemiological studies and, 12
on effect of particulate matter on endothelin system, 387–388
on effect of particulate matter on fibrinolysis, 395
on effect of particulate matter on nitric oxide, 392–393
on effect of particulate matter on von Willebrand factor, 396
Predictive testing
of compact nanoparticles, 534–536, 535f, 536f
of HARNs, 536–538, 537f
Preseparator, 73–74, 76
Primary effect, 252
Primary hemostasis, 406
Principal component analysis, 100
Prostacyclin I2 (PGI2), 338, 341, 381, 393
Prostaglandin E2, 393
Protease-activated receptors (PARs), 407
Protein coating, role in biodistribution, 137–138
Protein C pathway, 406
Protein kinase A, 337
Protein kinase C, 337
Protein oxidation, 260, 263–264
Prothrombin time, air pollution and, 407–408
P-selectin, 336, 341
carbon nanotube exposure and, 414–415
PSPs. See Poorly soluble particulates (PSPs)
PUFAs. See n-e Polyunsaturated fatty acids (PUFAs)
Pulmonary arterioles, 320
Pulmonary edema, 325, 326–327
Pulmonary endothelium, regulation of coagulant system, 338–339, 338f
Pulmonary hypertension
development of, 322–323
laryngeal irritation and, 451
Pulmonary inflammation
particulate matter exposure and, 206–207, 383–384, 384f, 415
thrombosis and, 413–414
Pulmonary lipid peroxidation, 259–260
Pulmonary macrovascular function, 321–323
Pulmonary mortality, \(\text{PM}_{10} \) and, 7
Pulmonary toxicity of particles, assessing, 535
Pulmonary vasculature, 320–324
anatomy and structure, 320
effect of nanoparticles on, 319
function and regulation, 321–324
inflammation and oxidative stress in, 327–328
microvasculature metabolism and inflammation, 328
pulmonary macrovascular function, 321–323
respiratory microvascular function, 323–324
Pulmonary vasculature injury
implications of, 324–327
mechanisms of, 327–330
nanoparticle chemical composition effects on, 328–330
PUL region deposition, 115–117, 116f, 117f, 118–119, 121, 122
QT interval, air pollution and, 247
Quantitative biodistribution, 130, 130f
Quantum dots, 151
thrombosis and, 198
Quartz
biologically effective dose for, 533
intracellular ROS production and, 255
oxidative stress and, 257
Quinone redox cycling, 253
Quinones
from combustion process, 257, 258
oxidative stress and, 150–151
ROS and, 68, 329
Race, air pollution exposures and myocardial infarction outcomes, 40
Radioisotope, incorporation of, 131
Radiolabeled ultrafine carbon particles, 232
RAGE signaling, 189f
Random effects, 244–245
Random intercept model, 244–245
Random slope model, 244
RANTES, 341
Rapidly adapting receptors (RARs), 450t, 451
RARs. See Rapidly adapting receptors (RARs)
RAS. See Renin-angiotensin system (RAS)
Rat lung overload, 527
Rat model, role of genetic hypertension in particulate matter health effects, 206–207
Reactive nitrogen species (RNS), particulates and generation of, 251, 252, 252f
Reactive oxygen species (ROS)
adverse cardiovascular effects on nanosized particles and, 178
AEC I and generation of, 335
cellular production of, 258–259
cytoskeletal contractility and, 337
detection of, 253–255
endogenous sources, 330
intracellular production of, 254–255
nanoparticles and, 175, 177
particulates and generation of, 251, 252, 252f, 329–330, 341, 432
signaling pathways in response to increasing, 262f
transition metals and, 15
ultrafine particles from diesel exhaust and, 176
vascular endothelium and production of, 337
Reactive oxygen species (ROS)-mediated signaling, 332
Reactive oxygen species (ROS) pathways, vascular oxidative stress and, 369, 371
Reactive oxygen species (ROS) potential continuous methods of measurement, 80
discontinuous methods of measurement, 68–69
Real-time single-particle mass spectrometry (RTSP-MS), 79
Redox-sensitive signaling pathways, oxidative stress and, 251
Regional pollutant data, 478–479
Regulation, of pulmonary vasculature, 321–324
Relative risk (RR) of mortality, short-term exposure to \(\text{PM}_{10} \) and, 54–55
Renal function, particulate matter effects on atherogenesis and, 303t, 306
Renin-angiotensin system (RAS), 352, 371, 453
Residential outdoor concentration, 98–99, 98t
Residual oil fly ash (ROFA)
 arrhythmia and pollutant exposure, 469–470
 autonomic nervous system balance and, 448t
 blood pressure and, 194t
 bradyarrhythmia and, 451
 cardiac alterations and, 202
 cardiovascular effects, 206–207
 exposure to dusts, 13
 heart rate and, 191t, 192t, 196
 short-term exposure to, 11
Resistin, 373
Respiratory burst, 330
Respiratory microvascular function, 323–324
Respiratory tract
 deposition patterns of spherical nanoparticles in, 114–120, 114f, 115f, 116f, 117f, 118f, 120f
 inflammatory response to inhaled particles, 274, 275
 translocation of nanoparticles from, 140, 140f
 vasculature, 320
Respiratory tract lining and fluid (RTLF), diesel engine exhaust particle interaction with, 277
Respiratory tract sensory receptors, 450–451, 450t
Resting endothelium, regulation of coagulation system by, 338f, 339f
Retinal flow velocity, particulate matter effects on atherogenesis and, 303t, 305
Retinal vessel diameter
 air pollution and, 311
 particulate matter effects on atherogenesis and, 303t, 305
RhoA/Rho-kinase activation, particulate matter and, 370, 371
Rho-kinase activation, angiotensin II (AII)-mediated hypertension and, 365–366t, 367
Rho/Rho-kinase pathway, PM$_{2.5}$ exposure and, 430
Rho/ROCK pathways, particulate matter exposure and activation of, 195
Risk, hazard vs., 486
Risk assessment, 485–494
 cohort studies, 488–489
 particle problem, 489–490
 possibility of generic approach, 492–494
 problems posed by air pollutants, 487–489
 time series, 488
RMSD, 452, 456
Road-to-ambient stage, of dispersion, 92
Rodents, cardiovascular physiology, 186
ROFA. See Residual oil fly ash (ROFA)
ROS. See Reactive oxygen species (ROS)
RP 5400, 78
RP 8400 S&N, 78
RR. See Relative risk (RR) of mortality
RTLF. See Respiratory tract lining and fluid (RTLF)
RTSP-MS. See Real-time single-particle mass spectrometry (RTSP-MS)
RUPIOH study, 98–99, 98t
Rush hours, peak of ultrafine particles during, 90
Rutile-type titanium dioxide particles, 532–533
Sampling points, 503
SAPK/JNK pathway, 335
Scandium, in ultrafine particles, 147t
Scanning electron microscopy, for chemical composition and morphology analysis, 68
Scanning Mobility Particle Sizer (SMPS), 111, 219, 220
SDNN, 452, 454, 456
Seasonal variation in particulate matter, 288
 ultrafine particle exposure and, 91, 94–95
Secondary effect, 252
Secondary hemostasis, 406
Secondary inorganic aerosols, 506–507
Second-hand smoke, 191t, 367
Selenium, in ultrafine particles, 148t
Sequential Mobility Particle Sizer (SMPS), 67, 71, 74f, 78, 82
SES. See Socioeconomic status (SES)
Sex, air pollution exposures and myocardial infarction outcomes, 40
sGC. See Soluble guanylate cyclase (sGC)
Shape, toxicity of nanomaterials and, 492
Ship emissions, 93
Short-term exposure, 45
defined, 47
Signaling pathways, increasing ROS and, 262f
Silica, oxidation potential of, 256f
Silica CAPs, inflammatory response and, 204
Silica particles
DNA damage and, 261
oxidized biomolecules and, 260
reduced GSH/GSSG ratio and, 259
thrombosis and, 413–414
toxicology of, 490
Silicates
biological effects, 159
DNA damage and, 261, 262
Silicon
in particulate matter, 5
in ultrafine particles, 146, 147, 147t, 148t
Silicon dioxide
manufactured nanomaterial from, 109
ultrafine vs. fine particles, 157, 158f
Silicosis, 263
Silver nanoparticles, 154
Singapore, air quality monitoring in, 517
Single-walled carbon nanotubes (SWCNTs), 152–153, 531
atherosclerosis progression and, 530
depletion of GSH and vitamin E and, 259
intracellular ROS production and, 255
oxidized biomolecules and, 260
Site-specific toxicity, 528
Six Cities study, 48, 49t, 489
Size
toxicity of nanomaterials and, 492
of ultrafine particles, 62, 62f
Size dependency, of nanoparticle biokinetics, 134–135
Size-integrated total concentrations, 65
Size-resolved size distributions, 65
Smog events
Donora, PA, 508
London, 3, 508
Smoking status
air pollution exposures and myocardial infarction outcomes, 40
particulate exposure and ectopic beats, 472–473
Smooth muscle cells, 172–173
effects of nanoparticles on vascular, 177
SMPS. See Scanning mobility particle sizer (SMPS); Sequential Mobility Particle Sizer (SMPS)
Socioeconomic status (SES), neighborhood vs. individual, 307, 313
Sodium, in ultrafine particles, 146, 147, 147t
Sodium cromoglycate, 198
Sodium nitroprusside, 391f
SODs. See Superoxide dismutases (SODs)
Solar radiation, particle number concentration and, 93
Solubility, toxicity of nanomaterials and, 492–493
Soluble guanylate cyclase (sGC), 389
Soot aggregates, shape factors of, 111
Soot particles, 63, 146
cardiovascular effects, 155
distance from road and concentration of, 92
SOPHIA study, 149
SOPs. See Standard operation procedures (SOPs)
Source review program, 514
Southern California, elemental composition of ultrafine particles collected in, 146
Spatial patterns of air pollution concentrations, 48
Spherical nanoparticles, deposition patterns in human respiratory tract, 114–120, 114f, 115f, 116f, 117f, 118f, 120f
Spherical particles, diffusion of, 110–111
Sphingomyelinases, activation of, 178
Spleen, nanoparticle retention in, 138t
Spores, in particulate matter, 5
Standard operation procedures (SOPs), 129
Statistical power, of implantable defibrillator device studies, 477–478
STEMI, sudden cardiac death and, 468f
Stroke mortality, proximity to traffic and, 51
ST-segment depression, air pollution and, 247
Subclinical atherosclerosis, assessment of, 302–306, 303t
Submucosal capillaries, 323
Submucosal capillary beds, 320
Substance P, 195, 196, 395
Sudden cardiac death, 467, 468f
ventricular ectopic beats and, 473
Sulfate
in diesel exhaust particles, 150, 228
in ultrafine particles, 82, 83, 83f, 84f, 146, 147
U.S. standards, 510–511
Sulfate ion
airborne peroxides and, 16
cardiopulmonary mortality and, 8
in fine mode particulate matter, 4
in indoor ambient air, 5–6
role of, 15
Sulfate particles
short-term effects on heart rate variability, 443t
vascular dysfunction and, 383
Sulfur
removal of in diesel fuel, 515
in ultrafine particles, 147t
Sulfur dioxide, 234, 246
cardiovascular disease mortality and, 50
ectopic beats and, 473
as hazard, 486
health risk of, 3
ICD discharge and concentration of, 477, 479
myocardial infarction and exposure to, 26t, 27t, 28t, 29t, 30t, 31t, 32–34t, 36–39t, 41
NAAQS for, 508n3
national ceilings for, 506, 507
role in effect of particulate matter, 13
standards for, 498, 511
threshold of effect for, 494
vascular dysfunction and, 383
Sulfur dioxide emission caps, 514, 515
Sulfur dioxide emissions, 63
Sulfuric acid, 63
nucleation and, 92
Sulfuric acid coatings, 16
Superoxide, 389
iron and production of, 157
Superoxide dismutases (SODs), 432
particulate exposure and generation of, 251, 252
particulate exposure and reduced, 259
Surface area, 65
discontinuous methods of measurement, 67
lung toxicity of ultrafine particle/nanoparticle exposure and, 156–160
measuring, 220
nanoparticle toxicity and, 534
of ultrafine particles, inflammatory response and, 527
Surface area concentration
continuous methods of measurement, 71–75
surface area monitors, 71–74, 72f, 73f
determination from number size distribution, 74–75, 74f
determination of from number size distribution, 74–75, 74f
Surface functional groups, ultrafine particle toxicity and, 156–158, 159f
Surface properties, translocation of nanoparticles and, 135
Surface reactivity
oxidative stress and, 256–257
ultrafine particle/nanoparticle exposure and, 156–157
Susceptible subgroups, focusing on, 242
SWCNTs. See Single-walled carbon nanotubes (SWCNTs)
Sympathetic nervous system, particles and, 442
Synthetic vitreous fibers (SVF), 536–537
Systemic inflammation, particulate matter exposure and, 199–200
Systemic markers, 196–204
Tailpipe emissions, as source of ultrafine particles, 63–64
Tailpipe-to-road stage, of dispersion, 92
Taiwan, elemental composition of ultrafine particles collected in, 147, 149
Tangled nanotubes, 531
Tapered Element Oscillating Microbalance (TEOM), 69–70, 219
TBARS. See Thiobarbituric reactive substances (TBARS)
TB region deposition, 115–116, 116f, 117f, 119, 121, 122
T cells
hypertension and, 371
response to air pollution, 280
TDCI-MS. See Thermal desorption
chemical ionization mass spectrometry
(TDCI-MS)
Technegas, 232, 412
99m-Technetium-labeled carbon particles,
232
Temperature, air pollution and, 99t
TEMPOL, 253
TEOM. See Tapered Element Oscillating
Microbalance (TEOM)
Terpenes, 63
TF. See Tissue factor (TF)
TGF-β family receptors, 337
Thailand
air quality management in, 518
cap-and-trade instruments in, 519–520
Thermal desorption chemical ionization
mass spectrometry (TDCI-MS), 79
Thermal precipitation, 68
Thermophoretic effects, deposition of
nanoparticles in lungs and, 109
Thermo 5020SPA, 79
Thiobarbituric acid, oxidation of, 260
Thiobarbituric reactive substances
(TBARS), 254, 263
titanium dioxide particles and, 260
Thioredoxin-1, 335
TH-1-like response, 340–341
TH-2-like response, 340–341
TH-1 lymphocytes, 339f
Thoracic particulate matter, 5
Threshold of effect, 486, 493–494
TH-2 responses, 339f
Thrombin, coagulation cascade and, 406
Thrombin-antithrombin complexes, 408
Thrombocytes. See Platelets
Thrombogenesis, effect of particulate matter
on, 412–415
Thrombomodulin, 338f 339
air pollution exposure and, 408
Thrombosis. See also Atherothrombosis
biomarkers of microvascular, 197t
endothelium and, 381
particulate matter and, 198–199, 274, 405
Thromboxane A2 (TXA2), 338–339, 389,
393
Thrombus formation, particulate matter
exposure and, 282–283, 325, 326
Time-course studies, assessing sustainability
of observed effect, 534
Time-domain heart rate variability
analysis, 452
Time-series studies, 24, 298, 487, 488
with air pollution exposures and
myocardial infarction
outcomes, 26–31t, 32–34t, 36–39t
exposure assessment in, 97–100, 98t,
99t
short-term exposure and, 46f, 47
weaknesses in, 42
Tire dust, role in effect of particulate
matter, 13
Tire particles (TP1), role in effect of
particulate matter, 13
Tire particles (TP2), role in effect of
particulate matter, 13
Tissue factor (TF), 341
air pollution exposure and, 408
coaulation and, 406
Tissue factor (TF) expression
particle-induced atherosclerosis
and, 427–428
PM2.5 and, 11, 12
Tissue factor (TF) pathway inhibitor, 406
Tissue factor (TF)-rich microparticles,
416f
Tissue plasminogen activator (tPA), 338,
341, 381, 394–395
diesel exhaust particle exposure
and, 279, 283, 431
Tissues
analysis following particle
administration, 127–129
macrodosimetric methods of
nanoparticles in, 130–131, 131–132t
Titanium
translocation of, 205
in ultrafine particles, 146, 147t, 148t
Titanium dioxide
manufactured nanomaterial from, 109
toxicity of, 527
Titanium dioxide nanoparticles, 109, 133
effect on cardiac cells, 178
hemolysis and, 174–175
Titanium dioxide particles, 532–533
 in alveolar macrophages, 535, 535f, 536f
 cardiovascular effects, 154
 DNA damage and, 260, 261, 262
 intracellular ROS production and, 255
 oxidative stress and, 257
 reduced GSH/GSSG ratio and, 259
TLRs. See Toll-like receptors (TLRs)
TNC, myocardial infarction and exposure to, 38t
TNF. See under Tumor necrosis factor (TNF)
Tobacco smoke. See also Cigarette smoke exposure studies, 199
 pulmonary vascular remodeling and, 323
 second-hand, 191t, 470
Tobacco smoking, ultrafine particle exposure and, 96
Toll-like receptors (TLRs), 371
 activation of, 331–332
 inhaled particles and, 278
Toll-like receptor (TLR)-2, 332
Toll-like receptor (TLR)-3, 332
Toll-like receptor (TLR)-4, 332
Toll-like receptor (TLR)-5, 332
Total number concentration, myocardial infarction and exposure to, 34
Total suspended particulate (TSP), 4, 497, 510
 for acute exposure to ambient air particulate matter, 7
 myocardial infarction and exposure to, 34, 37t, 39t
Total suspended particulate (TSP) to thoracic particulate, 5
Toxicity, of nanomaterials, 110, 492–494
Toxicity studies, effects of mixtures, 487
Toxicology, fiber, 536–538
Toxic response, to particulate matter in the lungs, 189, 189f
TP. See under Tire particles (TP)
tPA. See Tissue plasminogen activator (tPA)
Trace elements, in ultrafine particulate matter, 4
Trace metal oxides, in ultrafine particles, 146
Trace metals, volatile, 16
Tracheal instillation, human, 233
Traffic
 hot spots and high-density, 507
 ultrafine particles and, 90
Traffic emissions
 cross-community comparisons, 301
 spatial heterogeneity of, 246
Traffic-related diesel exhaust particles, deposition of, 119–120, 120f
Traffic-related noise, 51
 pollution vs., 307, 313
Traffic-related particulate matter assessing long-term exposure to, 300–302
 congestive heart failure and, 53
 heart diseases and, 50–51
 myocardial infarction and, 34–35, 39t, 40–41, 42
 peripheral arterial disease and, 53
Traffic soot particles, as particulate matter metric, 520–521
Transboundary agreements on emissions, 516
Transboundary origin of particulate matter, 506
Transcription factors, particulate matter and activation of, 155, 432
Transferrin, oxidative stress and, 335
Transition metals
 manufactured nanomaterial from, 109
 in nanoparticles, 109, 329
 oxidative stress resulting from, 255–256
 in particulate matter, 456
 reactive oxygen species and, 15, 329
 as source of free radicals, 493
Translocation, 15
 of exhaust-associated components, 205–206
 extrapulmonary, of ultrafine particles, 411–412
 of inhaled nanoparticles, 125–141, 126f
 biokinetics of selected nanoparticles, 134–137, 135f, 136t, 137t
 extrapolation from single dose to chronic exposure, 139–141, 140f
 long-term biokinetics, 138, 138t
 methodology to quantify, 127–132, 128–129t, 130f, 131–132t
Translocation (cont’d)
particle retention and relocation pathways within lungs, 133–134, 133t
of metals, 205
of nanoparticles, 160, 529–530, 534
of particulate matter, 188–189, 384f, 385, 415
cardiovascular effects, 274–275
of ultrafine particles, 160, 411–412
Transmission electron microscopy, for chemical composition and morphology analysis, 68
Transphosphorylation, diesel exhaust particle exposure and, 278
Transportation conformity program, 514
Trojan horse hypothesis, 289f
TSP. See Total suspended particulate (TSP)
Tumor necrosis factor (TNF)-α, 279, 280, 282, 332, 334, 411
nanoparticle inhalation and secretion of, 328
particle-induced release of, 426
Tumor necrosis factor (TNF)-μ, 373
TXA₂. See Thromboxane A₂ (TXA₂)
Type 2 diabetes mellitus, particulate matter exposure and, 12
UFP. See Ultrafine particles (UFP)
U.K. Expert Panel on Air Quality Standards, 486
Ultrafine carbon particles, effect on heart rate, 190, 191t
Ultrafine hypothesis, 490
Ultrafine organics, 16
Ultrafine particles (UFP), 4, 61. See also Nanoparticle (NP)
acid-coated, 16
adverse effects, 526–528
atherosclerotic aortic lesions and, 425–426
avtomonic nervous system balance and, 449t
cardiovascular effects, 149–150, 421
characteristics, 145–146
chemical composition, 82–84, 83f, 84f
defined, 145
deposition of, 276
diurnal variability of, 90, 90f
emission assessment for, 89–103
ambient levels, 90–93, 90f, 91f
emission, 93–97, 95f
long-term exposures, 102–103
in panel studies, 100–101
in time-series studies, 97–100, 98t, 99t
extrapulmonary translocation of, 411–412
formation of, 62–63, 92–93
free radicals and, 277, 329
health risks, 442
heart rate variability and, 454
hemostasis and, 408–409
indoor concentrations of, 93–95, 95f, 101
life span of, 89
measuring, 64–65
modeling deposition of, 112–114
monitoring of, 97
nanoparticles and, 109
particle number concentration and, 80–81, 81f, 97
particle surface area concentrations, 81–82, 82f
personal measurement of, 100–101
population exposures to, 5–6
proinflammatory and procoagulant effects, 149
ROS generation and, 336–337
scarcity of data on, 103
seasonal variability of, 91
short-term effects on heart rate variability, 446t, 447t
short-term health effects, 99–100, 99t
small-scale spatial variability in, 102
sources, 4–5, 61–64, 62f, 63f, 64f
surface area, 527
translocation of, 160
Ultrafine polystyrene particles, thrombosis and, 198
Ultrafine soot particles, contribution to concentration of particulate matter, 521
Ultrafine titanium dioxide particles, 532–533
ULTRA study, 97, 99t, 429, 455, 457
United States, environmental regulation in, 507–516
attainment plans by states, 513–514
Clean Air Amendments of 1970, 508–509
federal programs to reduce emissions of particulate matter, 514–516
NAAQS, 509–512, 511t
nonattainment areas, 512–513
United States Health Effects Institute, 489
University of Southern California, 223
Utah, 251
Urban background locations, 503
Urfurt (Germany), elemental composition of ultrafine particles collected in, 146, 147t
URG 9000 Ambient monitor, 78
Uric acid, particulate exposure and depletion of, 254
Urinary albumin excretion
air pollution and, 312
particulate matter effects on atherogenesis and, 306
Utah Valley dust exposure, 13
VACES. See Versatile aerosol concentration enrichment system (VACES)
Vacuum aerodynamic diameter (Dva), 84f
Valvular heart diseases, long-term exposure to air pollution and, 47
Vanadium
effect on cardiac cells, 177
health effects, 6
oxidative stress and, 255
role in effect of particulate matter, 13
ROS generation and, 329
translocation of, 205
in ultrafine particles, 4, 16, 147t, 148t
Vanadium CAPs, pulmonary inflammation and, 204
Vanadium sulfate exposure, effect on heart rate, 192t
Vascular adhesion molecule (VCAM), 321, 336, 337, 382
Vascular adhesion molecule (VCAM)-1, 278, 279, 280, 341
Vascular alterations, induced by particulate matter exposure, 201–202, 201f
Vascular diseases, chronic air pollution exposure and, 53–54
Vascular dysfunction
particle-induced atherosclerosis and, 430–431
in particulate matter-induced health effects, 200–201

Vascular endothelial growth factor (VEGF), 382
Vascular endothelium, 379–398
action of inhaled particles on endothelial pathways, 385–398, 386f, 397f
endothelial proteins, 394–396
vasoconstrictor pathways, 386–389, 387f
vasodilator pathways, 389–394, 390f, 391f
particulate matter and endothelial dysfunction, 382–385, 384f
properties and function, 380–382, 380f
inflammation, 381–382
regulation of vascular tone and blood flow, 380–381
thrombosis and hemostasis, 381
vascular repair and angiogenesis, 382
Vascular homeostasis, endothelium and, 379, 380f
Vascular inflammation, PM2.5 and, 11
Vascular injury. See Hemostasis
Vascular physiology, in animals, 189–195
blood pressure, 193–195, 194t
Vascular repair, endothelium and, 382
Vascular tone
endothelium and regulation of, 380–381
nitric oxide and, 339–340
Vasoconstrictor pathways
endothelin system, 386–388, 387f
thromboxane A2, 387f, 389
Vasodilator pathways, 389–394
eicosanoids, 393
endothelial-derived hyperpolarization factor, 394
nitric oxide, 389–393, 390f, 391f
Vasomotor tone, PM2.5 and, 11, 12
VCAM. See Vascular adhesion molecule (VCAM)
Vegetation fires, soot from, 63
VEGF. See Vascular endothelial growth factor (VEGF)
Vehicle emission standards, 519f
Ventricular arrhythmias
PM2.5 exposure and, 474–476, 476f
secondhand tobacco smoke exposure and, 470
short-term exposure to air pollution and, 47
triangle of, 469f
Ventricular ectopic beats, pollutant exposure and, 470, 472–473
Ventricular fibrillation, 467
Ventricular septal defects, maternal carbon monoxide exposure in pregnancy and, 53
Ventricular tachycardia (VT), 467 nonsustained, 473
Verapamil, 391, 391f
Versatile aerosol concentration enrichment system (VACES), 224–226, 225f
Very low-density lipoprotein (VLDL), airborne microparticles incorporated into, 290–291, 290t
Veterans study, 8
Vietnam, air quality management in, 518
Viral infection, response to, 332
Virtual impactor nozzle, 222f
Virtual impactor systems, 222–224
Vitamin C, 251, 254
Vitamin E, 251, 259
VLDL. See Very low-density lipoprotein (VLDL)
VOCs. See Volatile organic compounds (VOCs)
Volatile components, 226
Volatile organic compounds (VOCs) health risk of, 3 national ceilings for, 506, 507
Volatile organic copollutants, monitoring, 221
Volatile trace metals, 16
von Willebrand factor, 336, 338f, 381 ambient air particulate matter and, 8 effect of particulate matter on, 395–396
von Willebrand factor antigen, particulate matter exposure and, 325
Waist-to-hip ratio, PM$_{2.5}$ exposure, cardiovascular events and, 50
Weibel-Palade bodies, 336, 336f, 338f
WHI. See Women’s Health Initiative (WHI) study
White blood cells, PM$_{10}$ and, 12
WHO. See World Health Organization (WHO)
Whole body exposure, 127, 128t
Wind direction, ultrafine particle concentrations and, 92
Wind speed, particle number concentration and, 93
Within-city variability, of ultrafine particles, 91–92, 91f, 102–103
Women’s Health Initiative (WHI) study, 48–50, 49t, 55
Wood combustion, ultrafine particle concentrations and, 93
Wood smoke particles, 235 blood pressure increase and, 187 deposition rate of, 276 DNA damage and, 261 hemostasis and, 409 intracellular ROS production and, 255, 256f lipid peroxidation and, 264 oxidized biomolecules and, 260 translocation of components, 206
Worker’s pneumoconiosis, 263
World Health Organization (WHO) air quality guidelines, 97, 487, 499 definition of fiber, 536 European Centre for Environment and Health, 441 evaluations as starting point for standard setting, 498–500 on insufficient data to quantify health effects of particulate matter, 520 mortality related to air pollution, 273 on risk of genotoxic carcinogens, 486
XAD. See under Polystyrene-divinylbenzene (XAD)
Yttrium oxide nanoparticles, cardiovascular effects, 154
Yttrium oxide particles, inflammatory response and, 177, 329
Zinc effect on cardiac cells, 177 health effects, 6 particulate matter-associated, 204 role in effect of particulate matter, 6, 13 in ultrafine particles, 4, 16, 146, 147, 147t, 148t, 158–159
Zinc oxide manufactured nanomaterial from, 109 toxicity of, 527
<table>
<thead>
<tr>
<th>Zinc oxide nanoparticles</th>
<th>Zinc particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>cardiovascular effects, 154</td>
<td>biological effects, 158–159</td>
</tr>
<tr>
<td>effects on endothelial cells, 177</td>
<td>translocation of, 205</td>
</tr>
<tr>
<td>Zinc oxide particles</td>
<td>Zinc sulfate</td>
</tr>
<tr>
<td>inflammatory response and, 329</td>
<td>biological effects of,</td>
</tr>
<tr>
<td>sulfuric acid coatings on, 16</td>
<td>158–159</td>
</tr>
<tr>
<td>ultrafine, 153</td>
<td>effect on heart rate, 191t</td>
</tr>
</tbody>
</table>