CONTENTS

Acknowledgments xi

1 Introduction 1
 1.1 Part I: The Self-Organizing Method 1
 1.2 Part II: Dynamic Self-Organization for Image Filtering and Multimedia Retrieval 2
 1.3 Part III: Dynamic Self-Organization for Image Segmentation and Visualization 5
 1.4 Future Directions 7

2 Unsupervised Learning 9
 2.1 Introduction 9
 2.2 Unsupervised Clustering 9
 2.3 Distance Metrics for Unsupervised Clustering 11
 2.4 Unsupervised Learning Approaches 13
 2.4.1 Partitioning and Cluster Membership 13
 2.4.2 Iterative Mean-Squared Error Approaches 15
 2.4.3 Mixture Decomposition Approaches 17
 2.4.4 Agglomerative Hierarchical Approaches 18
 2.4.5 Graph-Theoretic Approaches 20
 2.4.6 Evolutionary Approaches 20
 2.4.7 Neural Network Approaches 21
 2.5 Assessing Cluster Quality and Validity 21
 2.5.1 Cost Function–Based Cluster Validity Indices 22
 2.5.2 Density-Based Cluster Validity Indices 23
 2.5.3 Geometric-Based Cluster Validity Indices 24

3 Self-Organization 27
 3.1 Introduction 27
 3.2 Principles of Self-Organization 27
 3.2.1 Synaptic Self-Amplification and Competition 27
 3.2.2 Cooperation 28
 3.2.3 Knowledge Through Redundancy 29
CONTENTS

3.3 Fundamental Architectures 29
 3.3.1 Adaptive Resonance Theory 29
 3.3.2 Self-Organizing Map 37
3.4 Other Fixed Architectures for Self-Organization 43
 3.4.1 Neural Gas 44
 3.4.2 Hierarchical Feature Map 45
3.5 Emerging Architectures for Self-Organization 46
 3.5.1 Dynamic Hierarchical Architectures 47
 3.5.2 Nonstationary Architectures 48
 3.5.3 Hybrid Architectures 50
3.6 Conclusion 50

4 Self-Organizing Tree Map 53
 4.1 Introduction 53
 4.2 Architecture 54
 4.3 Competitive Learning 55
 4.4 Algorithm 57
 4.5 Evolution 61
 4.5.1 Dynamic Topology 61
 4.5.2 Classification Capability 64
 4.6 Practical Considerations, Extensions, and Refinements 68
 4.6.1 The Hierarchical Control Function 68
 4.6.2 Learning, Timing, and Convergence 71
 4.6.3 Feature Normalization 73
 4.6.4 Stop Criteria 73
 4.7 Conclusions 74

5 Self-Organization in Impulse Noise Removal 75
 5.1 Introduction 75
 5.2 Review of Traditional Median-Type Filters 76
 5.3 The Noise-Exclusive Adaptive Filtering 82
 5.3.1 Feature Selection and Impulse Detection 82
 5.3.2 Noise Removal Filters 84
 5.4 Experimental Results 86
 5.5 Detection-Guided Restoration and Real-Time Processing 99
 5.5.1 Introduction 99
 5.5.2 Iterative Filtering 101
 5.5.3 Recursive Filtering 104
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5.4</td>
<td>Real-Time Processing of Impulse Corrupted TV Pictures</td>
<td>105</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Analysis of the Processing Time</td>
<td>109</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>Self-Organization in Image Retrieval</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Retrieval of Visual Information</td>
<td>120</td>
</tr>
<tr>
<td>6.2</td>
<td>Visual Feature Descriptor</td>
<td>122</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Color Histogram and Color Moment Descriptors</td>
<td>122</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Wavelet Moment and Gabor Texture Descriptors</td>
<td>123</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Fourier and Moment-based Shape Descriptors</td>
<td>125</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Feature Normalization and Selection</td>
<td>127</td>
</tr>
<tr>
<td>6.3</td>
<td>User-Assisted Retrieval</td>
<td>130</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Radial Basis Function Method</td>
<td>132</td>
</tr>
<tr>
<td>6.4</td>
<td>Self-Organization for Pseudo Relevance Feedback</td>
<td>136</td>
</tr>
<tr>
<td>6.5</td>
<td>Directed Self-Organization</td>
<td>140</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Algorithm</td>
<td>142</td>
</tr>
<tr>
<td>6.6</td>
<td>Optimizing Self-Organization for Retrieval</td>
<td>146</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Genetic Principles</td>
<td>147</td>
</tr>
<tr>
<td>6.6.2</td>
<td>System Architecture</td>
<td>149</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Genetic Algorithm for Feature Weight Detection</td>
<td>150</td>
</tr>
<tr>
<td>6.7</td>
<td>Retrieval Performance</td>
<td>153</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Directed Self-Organization</td>
<td>153</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Genetic Algorithm Weight Detection</td>
<td>155</td>
</tr>
<tr>
<td>6.8</td>
<td>Summary</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>The Self-Organizing Hierarchical Variance Map</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>An Intuitive Basis</td>
<td>160</td>
</tr>
<tr>
<td>7.2</td>
<td>Model Formulation and Breakdown</td>
<td>162</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Topology Extraction via Competitive Hebbian Learning</td>
<td>163</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Local Variance via Hebbian Maximal Eigenfilters</td>
<td>165</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Global and Local Variance Interplay for Map Growth and Termination</td>
<td>170</td>
</tr>
<tr>
<td>7.3</td>
<td>Algorithm</td>
<td>173</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Initialization, Continuation, and Presentation</td>
<td>173</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Updating Network Parameters</td>
<td>175</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Vigilance Evaluation and Map Growth</td>
<td>175</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Topology Adaptation</td>
<td>176</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Node Adaptation</td>
<td>177</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Optional Tuning Stage</td>
<td>177</td>
</tr>
</tbody>
</table>
CONTENTS

7.4 Simulations and Evaluation
7.4.1 Observations of Evolution and Partitioning
7.4.2 Visual Comparisons with Popular Mean-Squared Error Architectures
7.4.3 Visual Comparison Against Growing Neural Gas
7.4.4 Comparing Hierarchical with Tree-Based Methods

7.5 Tests on Self-Determination and the Optional Tuning Stage
7.6 Cluster Validity Analysis on Synthetic and UCI Data
7.6.1 Performance vs. Popular Clustering Methods
7.6.2 IRIS Dataset
7.6.3 WINE Dataset

7.7 Summary

8 Microbiological Image Analysis Using Self-Organization

8.1 Image Analysis in the Biosciences
8.1.1 Segmentation: The Common Denominator
8.1.2 Semi-supervised versus Unsupervised Analysis
8.1.3 Confocal Microscopy and Its Modalities

8.2 Image Analysis Tasks Considered
8.2.1 Visualising Chromosomes During Mitosis
8.2.2 Segmenting Heterogeneous Biofilms

8.3 Microbiological Image Segmentation
8.3.1 Effects of Feature Space Definition
8.3.2 Fixed Weighting of Feature Space
8.3.3 Dynamic Feature Fusion During Learning

8.4 Image Segmentation Using Hierarchical Self-Organization
8.4.1 Gray-Level Segmentation of Chromosomes
8.4.2 Automated Multilevel Thresholding of Biofilm
8.4.3 Multidimensional Feature Segmentation

8.5 Harvesting Topologies to Facilitate Visualization
8.5.1 Topology Aware Opacity and Gray-Level Assignment
8.5.2 Visualization of Chromosomes During Mitosis

8.6 Summary

9 Closing Remarks and Future Directions

9.1 Summary of Main Findings
9.1.1 Dynamic Self-Organization: Effective Models for Efficient Feature Space Parsing
9.1.2 Improved Stability, Integrity, and Efficiency
9.1.3 Adaptive Topologies Promote Consistency and Uncover Relationships
CONTENTS

9.1.4 Online Selection of Class Number 239
9.1.5 Topologies Represent a Useful Backbone for Visualization or Analysis 240

9.2 Future Directions 240
9.2.1 Dynamic Navigation for Information Repositories 241
9.2.2 Interactive Knowledge-Assisted Visualization 243
9.2.3 Temporal Data Analysis Using Trajectories 245

Appendix A 249
A.1 Global and Local Consistency Error 249

References 251
Index 269