CONTENTS

<table>
<thead>
<tr>
<th>Preface</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributors</td>
<td>xxi</td>
</tr>
</tbody>
</table>

PART I ENVIRONMENTAL AND HEALTH IMPACTS OF NANOMATERIALS: OVERVIEW AND CHALLENGES

1. Nanomaterials and the Environment
 Mai A. Ngo, Suzette Smiley-Jewell, Peter Aldous, and Kent E. Pinkerton
 - 1.1 Introduction 3
 - 1.2 Nanomaterials and the Environment 5
 - 1.2.1 Exposure 6
 - 1.2.2 Fate and Transport 6
 - 1.2.3 Transformation 7
 - 1.3 Nanomaterials and Biological Systems 8
 - 1.3.1 Exposure and Absorption 9
 - 1.3.2 Distribution 10
 - 1.3.3 Metabolism 11
 - 1.3.4 Excretion 12
 - 1.4 Conclusions and Directions for the Future 12
 References 13

2. Assessing the Life Cycle Environmental Implications of Nanomanufacturing: Opportunities and Challenges
 Vikas Khanna, Yi Zhang, Geoffrey Grubb, and Bhavik R. Bakshi
 - 2.1 Introduction 19
 - 2.2 Life Cycle Assessment and Challenges 20
 - 2.2.1 LCA Approach 20
 - 2.2.2 Nanotechnology LCA Challenges 23
 - 2.3 Life Cycle Assessment of Nanotechnology 24
 - 2.3.1 Expected Benefits 24
 - 2.3.2 Existing Work 24
 - 2.3.3 Inventory for LCA of Nanotechnology 25
3. An Integrated Approach Toward Understanding the Environmental Fate, Transport, Toxicity, and Health Hazards of Nanomaterials

John M. Pettibone, Sherrie Elzey, and Vicki H. Grassian

3.1 Introduction

3.2 Importance of an Integrated Approach Toward Understanding the Environmental Fate, Transport, Toxicity, and Health Hazards of Nanomaterials

3.2.1 Recommendations from Recent Workshop and Agency Reports

3.2.2 Nanoparticle Characterization: Bulk and Surface Properties

3.2.3 Nanoparticle Characterization in Air and Water

3.2.4 Testing Strategies and Commonly Used Markers for Inflammation and Response, the Need for Additional In Vivo Measurements for Nanoparticles

3.2.5 Example of a Combined Characterization and Toxicological Study Design for Inhaled Nanomaterials and a Review of Some Recent Results

3.3 Future Issues and Needs

Acknowledgments

References

PART II FATE AND TRANSPORT OF NANOMATERIALS IN THE ENVIRONMENT

4. Properties of Commercial Nanoparticles that Affect Their Removal During Water Treatment

Paul Westerhoff, Yang Zhang, John Crittenden, and Yongsheng Chen

4.1 Introduction

4.2 Nanoparticle Properties

4.2.1 Types of Nanoparticles
4.2.2 Particle Size 72
4.2.3 Surface Charge 75
4.2.4 Quantification of Nanoparticles in Water 75

4.3 Nanoparticle Removal Mechanisms During Water Treatment 76
 4.3.1 Coagulation 77
 4.3.2 Flocculation and Sedimentation 81
 4.3.3 Filtration 84

4.4 Conclusions 85
Acknowledgments 86
References 86

5. Transport and Retention of Nanomaterials in Porous Media 91
 Kurt D. Pennell, Jed Costanza, and Yonggang Wang

 5.1 Introduction 91
 5.2 The Subsurface Environment 92
 5.3 Nanomaterial Transport and Retention in Porous Media 92
 5.3.1 Nanoparticle Transport and Filtration 95
 5.3.2 Nanoparticle Aggregation 99
 5.3.3 Nanoparticle–Solid Interactions 102
 5.3.4 Nanoparticle Retention 103
 5.4 Summary 104
Acknowledgments 105
References 105

6. Transport of Nanomaterials in Unsaturated Porous Media 107
 Lixia Chen and Tohren C.G. Kibbey

 6.1 Introduction 107
 6.2 Major Mechanisms Influencing Saturated and Unsaturated Transport of Colloids and Nanomaterials 108
 6.2.1 Transport of Colloids and Nanomaterials in Saturated Porous Media 108
 6.2.2 Transport of Colloids and Nanomaterials in Unsaturated Porous Media 112
 6.3 Capillary Pressure–Saturation ($P_c - S$) Relationships and Air–Water Interfacial Area in the Unsaturated Zone 115
 6.3.1 Capillary Pressure–Saturation ($P_c - S$) Relationships of Porous Media 115
 6.3.2 Air–Water Interfacial Areas in Porous Media 117
 6.4 Mobilization and Transport of Colloids During Drainage and Imbibition 118
 6.5 Experimental Materials and Methods 119
 6.5.1 Materials 119
6.5.2 Air–Water Interfacial Area Measurement 120
6.5.3 Unsaturated Transport of SnO₂ and Latex Nanoparticles During Primary Drainage 120
6.5.4 Saturated Transport of SnO₂ and Latex Nanoparticles 122

6.6 Results and Discussion 122
6.6.1 Saturated Transport of SnO₂ and Latex Nanoparticles 122
6.6.2 Dynamic Unsaturated Retention of SnO₂ and Latex Nanoparticles During Primary Drainage 124
6.6.3 The Dependence of Dynamic Unsaturated Retention of SnO₂ and Latex Nanoparticles on the Air–Water Interfacial Area During Primary Drainage 125

6.7 Conclusions 126
Acknowledgments 127
References 127

7. Surface Oxides on Carbon Nanotubes (CNTs): Effects on CNT Stability and Sorption Properties in Aquatic Environments 133
Howard Fairbrother, Billy Smith, Josh Wnuk, Kevin Wepasnick, William P. Ball, Hyunhee Cho, and Fazlullah K. Bangash

7.1 Overview 133
7.2 Background 134
7.2.1 Oxidation of Carbon Nanotubes 135
7.2.2 Influence of Surface Chemistry on the Environmental Impact of Carbon Nanotubes 136
7.3 Preparation of Oxidized MWCNTs 137
7.3.1 Source of CNTs 137
7.3.2 Oxidative Treatment 137
7.4 Characterization of Oxidized Carbon Nanotubes 138
7.4.1 Effects of Oxidation on the Physical Characteristics of MWCNTs 138
7.4.2 Effects of Oxidation on the Chemical Composition of MWCNTs 140
7.5 Influence of Surface Oxides on the Aquatic Stability of MWCNTs 145
7.6 Influence of Surface Oxides on the Sorption Properties of MWCNTs 149
7.6.1 Effects of Surface Oxides on Naphthalene Sorption with MWCNTs 149
7.6.2 Effects of Surface Oxides on Zinc Sorption with MWCNTs 150
7.7 Summary 151
References 152
8. Chemical and Photochemical Reactivity of Fullerenes in the Aqueous Phase

John D. Fortner, Jaesang Lee, Jae-Hong Kim, and Joseph B. Hughes

8.1 Introduction 159
8.2 C60 Properties 160
 8.2.1 Structure 160
 8.2.2 Solid C60 161
 8.2.3 Solubility 162
 8.2.4 Spectroscopic Properties 163
 8.2.5 Aromaticity 164
 8.2.6 Reactivity 168
8.3 Fullerenes in Water 171
 8.3.1 Water-Stable C60 Aggregates 172
 8.3.2 Formation and Properties 173
 8.3.3 Surface Chemistry 174
8.4 Photochemical Reactivity of Fullerene in the Aqueous Phase 176
 8.4.1 Introduction 176
 8.4.2 Experimental 177
 8.4.3 Comparing Photochemical Production of 1O2 by C60 in Organic Solvent and Water-stable C60 Aggregates 178
 8.4.4 Photochemical Production of 1O2 by C60 Associated with Polymer and Surfactant in Aqueous Phase 180
 8.4.5 Photochemical Production of O2 by nC60 and C60 Associated with PVP and TX 100 in Aqueous Phase 182
 8.4.6 Environmental Significance 182
8.5 Reaction of Water-stable C60 Aggregates with Ozone 183
 8.5.1 Introduction 183
 8.5.2 Experimental 183
 8.5.3 Reaction Kinetics 184
 8.5.4 Product Characterization 185
 8.5.5 Environmental Significance 188
8.6 Conclusions 188
References 189

9. Bacterial Interactions with CdSe Quantum Dots and Environmental Implications

Jay L. Nadeau, John H. Priester, Galen D. Stucky, and Patricia A. Holden

9.1 Introduction 197
 9.1.1 Nanoparticles 197
9.1.2 CdSe Quantum Dots 198
9.1.3 Bacteria 200
9.2 Effects of Abiotic Factors on QD Fluorescence and Stability 201
9.3 Bacterial Microenvironments and Physical Associations with Nanoparticles 204
9.4 Biophysiochemical Interactions Between Bacteria and Quantum Dots 207
 9.4.1 QD Labeling, Uptake, Breakdown, and Toxicity in Bacteria 207
 9.4.2 Electron Transfer from Bacteria to Nanoparticles 213
 9.4.3 Nanocrystal Formation in Cells 214
9.5 Microbial Ecological Implications 215
9.6 Environmental Implications 216
9.7 Research Needs 218
9.8 Conclusions 220
Acknowledgments 221
References 221

PART III TOXICITY AND HEALTH HAZARDS OF NANOMATERIALS 233

10. Potential Toxicity of Fullerenes and Molecular Modeling of Their Transport across Lipid Membranes 235
 Dmitry I. Kopelevich, Jean-Claude Bonzongo, Ryan A. Tasseff, Jie Gao,
 Young-Min Ban, and Gabriel Bitton

 10.1 Introduction 235
 10.1.1 Toxicity of Environmental Contaminants at the Organismal Level 236
 10.1.2 Molecular Modeling of Interaction of Carbon-based MN with Cell Membranes 237
 10.2 Methods 238
 10.2.1 Determination of the Potential Toxicity of Fullerenes (C₆₀) Using Microbiotests 238
 10.2.2 Impacts of C₆₀ on Microbial Degradation of Organic Matter in Sediment Slurries 240
 10.2.3 Model Development for the Assessment of MNs’ Ability to Cross Cell Membranes 240
 10.3 Results 247
 10.3.1 Experimental Assessment of the Toxicity of C₆₀ Using Microbiotests and Sediment Indigenous Microorganisms 247
 10.3.2 Modeling Results 249
11. In Vitro Models for Nanoparticle Toxicology 261

John M. Veranth

11.1 Introduction 261
 11.1.1 Benefits of In Vitro Testing for Particle Toxicology 262
 11.1.2 Cells and Methods 264
 11.1.3 Commonly Studied Toxicology End Points 265
11.2 Cell Responses to Nanomaterials 267
 11.2.1 Effect of Particle Size 267
 11.2.2 Comparisons of Different Nanoparticle Types and Toxicity Mechanisms 268
 11.2.3 Particle Uptake Studies 269
 11.2.4 Cell Model Differences 270
 11.2.5 Comparisons of In Vitro and In Vivo Results 271
 11.2.6 Summary 272
11.3 Quantitative Considerations in Designing In Vitro Studies 272
 11.3.1 Length Scale Issues 272
 11.3.2 Timescale Issues 274
 11.3.3 Dose and Concentration Issues 276
11.4 Particle-induced Artifacts In Vitro 279
 11.4.1 Adsorption of Assay Reagents 280
 11.4.2 Adsorption of Cytokines 280
 11.4.3 Adsorption of Nutrients 281
11.5 In Vitro Assay Development and Validation 281
References 282

12. Biological Activity of Mineral Fibers and Carbon Particulates: Implications for Nanoparticle Toxicity and the Role of Surface Chemistry 287

Prabir K. Dutta, John F. Long, Marshall V. Williams, and W. James Waldman

12.1 Correlation of Biological Properties of Natural Minerals with Structure 287
 12.1.1 Characteristics of Zeolites 289
 12.1.2 Cell–Fiber Interactions 289
 12.1.3 Chemical Studies: Fenton Chemistry 295
 12.1.4 Mutagenicity 298
 12.1.5 Discussion: Correlation of Biological Activity with Structure 300
12.2. Correlations of Structure with Biological Response of Particulates

12.2.1 Internalization and Toxicity of Particulates 304
12.2.2 Particulate-induced Macrophage Oxidative Burst 304
12.2.3 Macrophage-mediated Endothelial Activation by Particulates 304
12.2.4 Quantitation of Particulate-induced TNF-α Production by Macrophages 308
12.2.5 Determination of Fenton Activity of Particles 310
12.2.6 Discussion: Correlation of Biological Activity with Structure 311

Acknowledgments 312
References 312

13. Growth and Some Enzymatic Responses of E. Coli to Photocatalytic TiO₂

Ayca Erdem, Dan Cha, and Chin Pao Huang

13.1 Introduction 319

13.2 Factors Affecting the Photocatalytic Activity of TiO₂ with Respect to Bacterial Inactivation 320
13.2.1 Light Intensity 320
13.2.2 Light Source and Wavelength 321
13.2.3 pH 323
13.2.4 Temperature 324
13.2.5 O₂/N₂ Atmosphere 325

13.3 Target Organism 326
13.3.1 Type of Bacteria 326
13.3.2 Growth Phase 327
13.3.3 Growth Media 327

13.4 Toxicological Effects of Nanoparticles 329
13.4.1 Ecotoxicity 329
13.4.2 Toxicity on Human Health 330

13.5 Killing Mechanisms 332
13.5.1 TiO₂/UV Process 332
13.5.2 Cell Membrane Damage 333
13.5.3 Enzymatic Response: Glutathione S-Transferase Activity 335
13.5.4 Genetic Response: DNA Damage 336
13.5.5 Overall Killing Mechanisms 338

13.6 Summary 339
Acknowledgments 340
References 340
14. Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments

Jason Unrine, Paul Bertsch, and Simona Hunyadi

14.1 Introduction
14.2 Metal and Metal Oxide Nanoparticles, Their Uses, and Properties
14.3 Chemical Speciation, Bioavailability, and Toxicity of Metals
14.4 Factors Likely to Influence Bioaccumulation and Trophic Transfer of Nanoparticles
14.5 The Surface and Environmental Modifications of the Surface
14.6 Summary and Research Needs
Acknowledgments
References

15. Health Effects of Inhaled Engineered Nanoscale Materials

Amy K. Madl and Kent E. Pinkerton

15.1 Introduction
15.1.1 What is a Nanoparticle?
15.2 Considerations for Studying Inhaled Engineered Nanomaterials
15.2.1 Potential Inhalation Exposure of Nanoparticles
15.2.2 General Concepts of Pulmonary Deposition and Clearance of Nanoparticles
15.2.3 Instillation Versus Inhalation Studies
15.2.4 Aerosol Characterization for Inhalation Studies
15.3 Respiratory Toxicology Studies of Engineered Nanomaterials
15.3.1 Nanoscale Titanium Dioxide Particles
15.3.2 Nanotubes
15.3.3 Nanowires
15.3.4 Nanosized Model Particles
15.3.5 Extrapulmonary Transport of Inhaled Nanosized Particles
15.4 Bridging the Knowledge Gap Between Experimental Studies and Human Exposures
15.4.1 Human Clinical Studies of Nanoparticles
15.4.2 Correlating Nanoparticle Exposure, Dosimetry, and Health Effects
15.5 Considerations of Product Safety of Nanomaterials
15.6 Conclusion
Acknowledgment
References