CONTENTS

Preface, ix

Acknowledgements, xi

Contributing authors, xii

PART 1: ROOTS, RELEVANCE, AIMS AND VALUES, 1

1 THE ROOTS OF CONSERVATION BIOGEOGRAPHY, 3

1.1 What is conservation biogeography?, 3
1.2 The emergence of conservation biology and conservation biogeography, 4
1.3 The scope of conservation biogeography, 7
 1.3.1 To what ends?, 7
1.4 Outline of the following chapters, 11

Suggested reading, 12

2 SOCIAL VALUES AND CONSERVATION BIOGEOGRAPHY, 13

2.1 Many values, many goals, 13
2.2 The origins and values of different protected area types, 14
 2.2.1 Sacred sites, 16
 2.2.2 Resource and game reserves, 17
 2.2.3 State and country parks, 18
 2.2.4 Nature monuments and nature reserves, 19
 2.2.5 Wildlife sanctuaries and refuges, 19
2.2.6 Wilderness areas, 20
2.2.7 National parks, 21
2.2.8 Community conservation areas, 22
2.3 Reserve designations from international conventions, 22
2.4 An international system for categorizing protected areas, 23

2.5 Social values and conservation practice, 26
 2.5.1 Attitudes to non-native species, 26
 2.5.2 Restoration and rewilding, 28
2.6 Concluding remarks, 29

For discussion, 30

Suggested reading, 30

3 BASELINES, PATTERNS AND PROCESS, 31

3.1 Introduction, 31
3.2 Ecosystem composition and function, 31
3.3 Balance versus flux, 32
3.4 Understanding ecosystems in flux, 34
3.5 Defining and using baselines, 38
 3.5.1 Baselines derived from relict pristine systems, 38
 3.5.2 Baselines derived from long-term ecology, 39
 3.5.3 Rewilding, 41
 3.5.4 The challenge of rapid environmental change, 42
3.6 Adaptive ecosystem management, 42

For discussion, 44

Suggested reading, 44

PART 2: THE DISTRIBUTION OF DIVERSITY: CHALLENGES AND APPLICATIONS, 45

4 BASIC BIOGEOGRAPHY: ESTIMATING BIODIVERSITY AND MAPPING NATURE, 47

4.1 Introduction, 47
 4.1.1 Our incomplete knowledge of biodiversity, 47
 4.1.2 Why do we map?, 48
4.2 Three knowledge shortfalls, 49
 4.2.1 The Linnean shortfall, 49
 4.2.2 The Wallacean shortfall, 54
 4.2.3 The extinction estimate shortfall, 58
4.3 The fundamental taxonomic units of conservation biogeography, 62
 4.3.1 Species versus other genetically-based conservation units, 62
 4.3.2 Evolutionarily Significant Units (ESUs), 64
 4.3.3 Other conservation units, 65
4.4 Spatial distributions: from genes to biogeographical regions, 65
 4.4.1 Mapping species individually and collectively, 65
 4.4.2 Phylogeography, 72
 4.4.3 Endemism, 74
 4.4.4 Biogeographical regions, 75
4.5 Mapping function, 76
 4.5.1 Biomes, ecosystems and communities, 76
 4.5.2 Ecoregions, 82
4.6 Natural units in the marine realm, 83

5 THE SHAPING OF THE GLOBAL PROTECTED AREA ESTATE, 93
5.1 Origins, 93
5.2 Typology of frameworks, 95
 5.2.1 Spatial classification of approaches – contiguous areas, landscape units and habitat islands, 97
 5.2.2 Biogeographical (compositional) versus Ecological (functional) approaches, 100
 5.2.3 Strategic goals – composition, function, numbers and attributes, 102
5.3 Terrestrial protected area schemes, 104
 5.3.1 IUCN Biogeographical Regions (Dasmann–Udvardy) scheme, 104
 5.3.2 Endemic Bird Areas, 106
 5.3.3 Conservation International’s hotspots, 109
 5.3.4 The WWF Ecoregions scheme, 113
 5.3.5 Important Bird Areas and Key Biodiversity Areas, 117
5.4 Marine protected areas, 121
 5.4.1 Status of the marine realm, 121
 5.4.2 Origins and expansion of the marine protected area estate, 122
 5.4.3 A global representative system of marine protected areas, 123
5.5 Current trends and future directions, 134

6 SYSTEMATIC CONSERVATION PLANNING: PAST, PRESENT AND FUTURE, 136
6.1 Introduction, 136
6.2 What is systematic conservation planning and why use it?, 138
6.3 Concepts and principles, 138
 6.3.1 Representativeness, 138
 6.3.2 Persistence (adequacy), 139
 6.3.3 Efficiency, 139
 6.3.4 Flexibility, 140
6.4 Developing a systematic conservation plan, 140
 6.4.1 Achieving representation, 140
 6.4.2 Achieving persistence, 146
 6.4.3 Achieving efficiency, 151
 6.4.4 Achieving flexibility, 152
6.5 Decision support tools to identify and prioritize new protected areas, 152
6.6 Consultation and implementation of systematic conservation plans, 155
6.7 What does the future of systematic conservation planning hold?, 156
 6.7.1 Conservation planning is a dynamic problem, 158
 6.7.2 Conservation assets change through time, 158
 6.7.3 A mix of conservation actions could occur at any site, 158
 6.7.4 Better economics and socio-economics, 158
 6.7.5 Dealing with uncertainty, 158
 6.7.6 Properly accounting for threats, 159
 6.7.7 Persistence – attainable goal or impractical utopia?, 159
 6.7.8 How much should we invest in improving a conservation plan?, 159

For discussion, 159
Suggested reading, 160
PART 3: CONSERVATION PLANNING IN A CHANGING WORLD, 161

7 PLANNING FOR PERSISTENCE IN A CHANGING WORLD, 163
7.1 Introduction, 163
7.2 Using the past to understand the present and predict the future, 164
 7.2.1 Predicting future ecosystem responses to changing conditions, 168
 7.2.2 Interpreting recent trends in their historical context, 169
 7.2.3 Geographical range collapse, 170
7.3 Predicting biodiversity change, 176
 7.3.1 Modelling the current distributions of species, habitats and biomes, 177
 7.3.2 Modelling range shifts, 180
7.4 What do we do about it? Dynamic conservation planning, 183
 7.4.1 Incorporating dynamic biotic and abiotic processes into conservation plans, 183
 7.4.2 Changes in socio-economic factors, 185
 7.4.3 Climate change, conservation planning and assisted migration, 185
7.5 Closing remarks, 188
For discussion, 188
Suggested reading, 189

8 APPLIED ISLAND BIOGEOGRAPHY, 190
8.1 Introduction, 190
8.2 Implications of habitat loss and fragmentation: from theory to evidence, 194
 8.2.1 The use of species–area relationships in conservation, 194
 8.2.2 Relaxation and the extinction debt, 199
 8.2.3 Ecosystem collapse and threshold responses in habitat islands, 203
8.3 Species incidence, 208
 8.3.1 Minimum viable populations, minimum areas and incidence functions, 208
 8.3.2 Metapopulation dynamics, 211
8.4 Nestedness, 213
 8.4.1 Edge effects, 216
 8.4.2 Habitat corridors, 217
 8.4.3 Landscape context – matrix effects, 218
8.5 Emergent guidelines for conservation, 219
For discussion, 222
Suggested reading, 223

9 BIOLOGICAL INVASIONS AND THE HOMOGENIZATION OF FAUNAS AND FLORAS, 224
9.1 The biogeography of species invasions, 224
 9.1.1 The invasion process, 224
 9.1.2 Human-assisted versus prehistoric invasions, 226
 9.1.3 Economic and ecological impacts of invasion, 227
9.2 Biotic homogenization, 229
 9.2.1 The process of biotic homogenization, 230
 9.2.2 Different manifestations of biotic homogenization, 230
9.3 Patterns of biotic homogenization, 232
 9.3.1 Fishes, 232
 9.3.2 Birds, 235
 9.3.3 Plants, 237
 9.3.4 Mammals, 237
9.4 Environmental and human drivers of biotic homogenization, 238
9.5 Biotic homogenization and conservation, 240
9.6 Novel assemblages, 241
For discussion, 242
Suggested reading, 243

PART 4: FUTURE DIRECTIONS, 245
10 PROSPECTS AND CHALLENGES, 247
10.1 Why we need conservation biogeography, 247
10.2 The challenges, 248
 10.2.1 Filling the Wallacean and Linnean shortfalls, 248
 10.2.2 Improving models, simulations and forecasts, 250
 10.2.3 Turning theory into practice, 251
 10.2.4 Education, communication and public engagement, 252
 10.2.5 Reconciliation ecology and a biogeography of the countryside, 257
10.3 Looking to the future, 257
Glossary of terms, 259
References, 264
Index, 297
Colour plates appear in between pages 148 and 149

This book has a companion website: www.wiley.com/go/ladle/biogeography