Contents

List of contributors xi
Preface xiii

1 Creating and formulating flavours 1
 John Wright
 1.1 Introduction 1
 1.1.1 A little history 1
 1.2 Interpreting analyses 2
 1.3 Flavour characteristics 3
 1.3.1 Primary characters 3
 1.3.2 Secondary characteristics 4
 1.3.3 Taste effects 5
 1.3.4 Complexity 6
 1.3.5 Flavour balance 6
 1.3.6 Unfinished work 7
 1.4 Applications 8
 1.4.1 Ingredient factors 8
 1.4.2 Processing factors 10
 1.4.3 Storage factors 10
 1.4.4 Consumption factors 11
 1.5 Flavour forms 11
 1.5.1 Water-soluble liquid flavours 11
 1.5.2 Clear water-soluble liquid flavours 12
 1.5.3 Oil-soluble liquid flavours 13
 1.5.4 Emulsion-based flavours 13
 1.5.5 Dispersed flavours 13
 1.5.6 Spray-dried flavours 14
 1.6 Production issues 15
 1.7 Regulatory affairs 16
 1.8 A typical flavour 16
 1.9 Commercial considerations 19
 1.9.1 International tastes 19
 1.9.2 Abstract flavours 20
 1.9.3 Matching 21
 1.9.4 Customers 22
 1.10 Summary 22

References 23
2 Flavour legislation

Jack Knights

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>24</td>
</tr>
<tr>
<td>2.2 Methods of legislation</td>
<td>24</td>
</tr>
<tr>
<td>2.3 Legislation in the United States</td>
<td>26</td>
</tr>
<tr>
<td>2.4 International situation: JECFA</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Council of Europe</td>
<td>28</td>
</tr>
<tr>
<td>2.6 European community</td>
<td>30</td>
</tr>
<tr>
<td>2.6.1 Background – national to EU legislation</td>
<td>30</td>
</tr>
<tr>
<td>2.6.3 Smoke flavourings 2003 Directive</td>
<td>40</td>
</tr>
<tr>
<td>2.6.4 Developments 2008 onwards</td>
<td>41</td>
</tr>
<tr>
<td>2.7 Current EU Situation and the future</td>
<td>47</td>
</tr>
</tbody>
</table>

References | 48 |

3 Basic chemistry and process conditions for reaction flavours with particular focus on Maillard-type reactions

Josef Kerler, Chris Winkel, Tomas Davidek and Imre Blank

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>51</td>
</tr>
<tr>
<td>3.2 General aspects of the Maillard reaction cascade</td>
<td>51</td>
</tr>
<tr>
<td>3.2.1 Intermediates as flavour precursors</td>
<td>54</td>
</tr>
<tr>
<td>3.2.2 Carbohydrate fragmentation</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3 Strecker degradation</td>
<td>61</td>
</tr>
<tr>
<td>3.2.4 Interactions with lipids</td>
<td>62</td>
</tr>
<tr>
<td>3.3 Important aroma compounds derived from Maillard reaction in food and process flavours</td>
<td>65</td>
</tr>
<tr>
<td>3.3.1 Character-impact compounds of thermally treated foods</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2 Character-impact compounds of process flavours</td>
<td>70</td>
</tr>
<tr>
<td>3.4 Preparation of process flavours</td>
<td>74</td>
</tr>
<tr>
<td>3.4.1 General aspects</td>
<td>74</td>
</tr>
<tr>
<td>3.4.2 Factors influencing flavour formation</td>
<td>74</td>
</tr>
<tr>
<td>3.4.3 Savoury process flavours</td>
<td>78</td>
</tr>
<tr>
<td>3.4.4 Sweet process flavours</td>
<td>80</td>
</tr>
<tr>
<td>3.5 Outlook</td>
<td>80</td>
</tr>
</tbody>
</table>

References | 81 |

4 Biotechnological flavour generation

Ralf G. Berger, Ulrich Krings and Holger Zorn

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>89</td>
</tr>
<tr>
<td>4.2 Natural flavours: market situation and driving forces</td>
<td>89</td>
</tr>
<tr>
<td>4.3 Advantages of biocatalysis</td>
<td>90</td>
</tr>
<tr>
<td>4.4 Micro-organisms</td>
<td>91</td>
</tr>
<tr>
<td>4.4.1 Biotransformation and bioconversion of monoterpenes</td>
<td>91</td>
</tr>
<tr>
<td>4.4.2 Bioconversion of C_{13}-norisoprenoids and sesquiterpenes</td>
<td>95</td>
</tr>
<tr>
<td>4.4.3 Generation of oxygen heterocycles</td>
<td>96</td>
</tr>
</tbody>
</table>
4.4.4 Generation of vanillin, benzaldehyde and benzoic compounds 97
4.4.5 Generation of miscellaneous compounds 99
4.5 Enzyme technology 101
 4.5.1 Liberation of volatiles from bound precursors 101
 4.5.2 Biotransformations 101
 4.5.3 Kinetic resolution of racemates 103
4.6 Plant catalysts 104
 4.6.1 Plant cell, tissue and organ cultures 104
 4.6.2 Callus and suspension cultures 105
 4.6.3 Organ cultures 105
 4.6.4 Plant cell biotransformations 107
4.7 Flavours through genetic engineering 107
 4.7.1 Genetically modified micro-organisms 108
 4.7.2 Isolated enzymes from genetically modified micro-organisms 109
 4.7.3 Plant rDNA techniques 110
4.8 Advances in bioprocessing 112
 4.8.1 Process developments in microbial and enzyme systems 112
 4.8.2 Process developments of plant catalysts 114
4.9 Conclusion 114
References 115

5 Natural sources of flavours 127
Peter S.J. Cheetham

5.1 Introduction 127
5.2 Properties of flavour molecules 129
 5.2.1 Flavour perception 129
 5.2.2 Differences in sensory character and intensity between isomers 141
 5.2.3 Extraction of flavours from plant materials 142
 5.2.4 Commercial aspects 146
 5.2.5 Economic aspects 147
 5.2.6 Safety aspects 147
5.3 Dairy flavours 147
 5.3.1 Background 147
 5.3.2 Cream and butter 148
 5.3.3 Cheese 149
5.4 Fermented products 151
 5.4.1 Hydrolysed vegetable proteins 151
 5.4.2 Chocolate 152
 5.4.3 Tea 153
 5.4.4 Coffee 154
 5.4.5 Beer 154
 5.4.6 Wine 156
 5.4.7 Sweeteners 158
5.5 Cereal products 158
Contents

5.6 Vegetable sources of flavour 159
 5.6.1 Spice flavours 159
 5.6.2 Mushroom 161
 5.6.3 Garlic, onion and related flavours 161
 5.6.4 Brassica flavours, including mustard and horseradish 163
 5.6.5 'Fresh/green/grassy' 164
 5.6.6 Nuts 164
 5.6.7 Other vegetables 165
 5.6.8 Fermented vegetables 165

5.7 Fruit 165
 5.7.1 Apples 166
 5.7.2 Pears 167
 5.7.3 Grapefruit 167
 5.7.4 Blackcurrant 167
 5.7.5 Raspberry 168
 5.7.6 Strawberry 168
 5.7.7 Apricot and peach 169
 5.7.8 Tomato 169
 5.7.9 Cherry 169
 5.7.10 Tropical fruit flavours 170
 5.7.11 Vanilla 170
 5.7.12 Other fruits 171
 5.7.13 Citrus 171
 5.7.14 Citrus processing 172

5.8 Other flavour characteristics 174

5.9 Fragrance uses 174

5.10 Conclusion 175

References 175

6 Useful principles to predict the performance of polymeric flavour delivery systems 178
Daniel Benczédi
 6.1 Overview 178
 6.2 Introduction 178
 6.3 Compatibility and cohesion 179
 6.4 Sorption and swelling 182
 6.5 Diffusion and release 184
 References 187

7 Delivery of flavours from food matrices 190
Saskia M. van Ruth and Jacques P. Roozen
 7.1 Introduction 190
 7.2 Flavour properties 191
 7.3 Thermodynamic aspects of flavour delivery 191
 7.3.1 Definition of gas/product partition coefficients and activity coefficients 191
 7.3.2 Types of binding 193
Contents vii

7.3.3 Lipid–flavour interactions 194
7.3.4 Carbohydrate–flavour interactions 195
7.3.5 Protein–flavour interactions 196

7.4 Kinetic aspects of flavour delivery 197
7.4.1 Principles of interfacial mass transfer 198
7.4.2 Liquid food products 200
7.4.3 Semi-solid food products 200
7.4.4 Solid food products 201

7.5 Delivery systems: food technology applications 202
7.6 Conclusions 203
References 203

8 Modelling flavour release 207
Robert S. T. Linforth

8.1 Introduction 207
8.2 Equilibrium partition models 208
8.2.1 The air/water partition coefficient 208
8.2.2 Estimation of K_{aw} using QSPR 209
8.2.3 Effect of lipid on volatile partitioning 211
8.2.4 QSPR estimation of the air/emulsion partition coefficient 212
8.2.5 Internet models and databases 213

8.3 Dynamic systems 214
8.3.1 Modelling flavour release from a retronasal aroma simulator 214
8.3.2 Non-equilibrium partition modelling of volatile loss from matrices 215
8.3.3 Modelling the gas-phase dilution of equilibrium headspace above emulsions 216
8.3.4 Modelling the gas-phase dilution of equilibrium headspace above emulsions 218
8.3.5 Modelling the rate of volatile equilibration in the headspace above emulsions 219

8.4 In vivo consumption 220
8.4.1 Modelling release from emulsions during consumption 222
8.4.2 Effect of gas flow on volatile equilibration above emulsions 222
8.4.3 Modelling volatile transfer through the upper airway 223
8.4.4 Non-equilibrium partition model for in vivo release 223
8.4.5 Modelling flavour release using time–intensity data 224
8.4.6 QSPR of in vivo volatile release from gels 224

8.5 Conclusion 226
References 227

9 Instrumental methods of analysis 229
Gary Reineccius

9.1 Analytical challenges 229
9.2 Aroma isolation 231
9.2.1 Aroma isolation methods based on volatility 231
Contents

9.2.2 Aroma isolation methods using solvent extraction 237
9.2.3 Solid-phase micro-extraction 238
9.2.4 General considerations in preparing aroma isolates 241
9.2.5 Aroma isolation summary 241

9.3 Selection of aroma isolation method 242
9.3.1 ‘Complete’ aroma profile 242
9.3.2 Key components contributing to sensory properties 243
9.3.3 Off-notes in a food product 243
9.3.4 Monitoring aroma changes in foods 244
9.3.5 Using aroma compound profiles to predict sensory response 244
9.3.6 Summary comments on isolation methods 245

9.4 Aroma isolate fractionation prior to analysis 245
9.4.1 Fractionation of concentrates prior to analysis 245

9.5 Flavour analysis by gas chromatography 249
9.5.1 High-resolution gas chromatography 249
9.5.2 Gas chromatography–olfactometry 250
9.5.3 Specific gas chromatographic detectors 254

9.6 Flavour analysis by HPLC 254

9.7 Identification of volatile flavours 255
9.7.1 Gas chromatography 255
9.7.2 Infrared spectroscopy 256
9.7.3 Mass spectrometry 257

9.8 Electronic ‘noses’ 261

9.9 Summary 262
References 262

10 On-line monitoring of flavour processes 266
Andrew J. Taylor and Robert S.T. Linforth

10.1 Introduction 266
10.2 Issues associated with in vivo monitoring of flavour release 268
10.2.1 Speed of analysis 268
10.2.2 Analysis of different chemical classes 268
10.2.3 Sensitivity 269
10.2.4 Identification of analysed compounds 270
10.2.5 Interfering factors 270
10.2.6 Non-volatile tastants 270

10.3 Pioneers and development of on-line flavour analysis 271

10.4 On-line aroma analysis using chemical ionisation techniques 272
10.4.1 Analysis via atmospheric pressure chemical ionisation 272
10.4.2 Analysis via PTR 275
10.4.3 Analysis via selected ion flow tube 275
10.4.4 Calibration 276
10.4.5 Suppression 277
10.4.6 Assigning ions to compounds for unequivocal identification 277
10.4.7 Summary 279
10.5 Analysis of tastants using direct mass spectrometry
10.6 Applications
 10.6.1 Breath-by-breath analysis
 10.6.2 Flavour reformulation in reduced fat foods
 10.6.3 Flavour release in viscous foods
 10.6.4 Measuring aroma release in ethanolic beverages
 10.6.5 Monitoring flavour generation on-line
 10.6.6 Rapid headspace profiling of fruits and vegetables
10.7 Future
References

11 Sensory methods of flavour analysis
Ann C. Noble and Isabelle Lesschaeve
11.1 Introduction
11.2 Analytical tests
 11.2.1 Discrimination tests
 11.2.2 Intensity rating tests
 11.2.3 Time–intensity rating
 11.2.4 Taste–smell interactions
 11.2.5 Descriptive analysis
 11.2.6 Quality control tests
11.3 Consumer tests
 11.3.1 Purpose of consumer tests
 11.3.2 Methods
11.4 Sensory testing administration
 11.4.1 Facilities
 11.4.2 Test administration
 11.4.3 Experimental design
11.5 Selection and training of judges
 11.5.1 Human subject consent forms and regulations
 11.5.2 Judges
11.6 Statistical analysis of data
 11.6.1 Analytical tests
 11.6.2 Consumer tests
11.7 Relating sensory and instrumental flavour data
11.8 Summary
References

12 Brain imaging
Luca Marciani, Sally Eldeghaidy, Robin C. Spiller, Penny A. Gowland and Susan T. Francis
12.1 Introduction
12.2 Cortical pathways of taste, aroma and oral somatosensation
 12.2.1 Basic brain anatomy and function
 12.2.2 Central gustatory pathways
 12.2.3 Central olfactory pathways
Contents

12.2.4 Central oral somatosensory pathways 325
12.2.5 Interaction and association of stimuli 325
12.3 Imaging of brain function 327
 12.3.1 Methodologies to image brain function 327
 12.3.2 Functional magnetic resonance imaging 328
 12.3.3 fMRI design for flavour processing 338
 12.3.4 Behavioural data and subject choice 341
 12.3.5 Measurement limitations 341
12.4 Brain imaging of flavour 343
 12.4.1 Brain imaging of taste 343
 12.4.2 Brain imaging of aroma 343
 12.4.3 Imaging cortical associations 344
 12.4.4 Texture and the ‘taste of fat’ 345
 12.4.5 The issue of the ‘super-tasters’ 345
12.5 Future trends 345
References 346

Index 351