Index

Absorption of flavours, 193
Abstract flavours, 20
Acetic acid – pathway, 59
Acid/base fractionation, 245
advantages, 246
scheme, 246
Activated charcoal
aroma extraction, 234
Activity coefficients, 191, 193–194, 209
Acyloins – bio formation, 100
Additives in flavourings, 36
Adsorption of flavours, 193
AEDA (Aroma Extract Dilution Analysis), 65, 297
AEDA (Aroma Extract Dilution Analysis) of cocoa, 133
AEDA (Aroma Extract Dilution Analysis) of milk chocolate, 134
AEDA (Aroma Extract Dilution Analysis) of tea, 133
AEDA Aroma Extract Dilution Analysis, 252
Agaric acid
limit in flavours, 35, 44
Alcohol oxidation
biotechnology, 94
Allium flavours, 162
Alpha helices, 196
α-Pinene
biotransformation, 92
Amadori compound formation, 53
Amadori rearrangement products (ARP), 54
Analytical challenges in flavour, 229
Analytical methods
choosing the appropriate method, 230
trace levels of flavour compounds, 230
Anise
secondary metabolites, 106
ANOVA, 310
APCI ionisation
direct MS in the liquid mode, 280
APCI-MS, 259
Apple flavour, 166
Apple varieties, 166
Apricot flavour, 169
Aroma analysis
delivery from foods, 260
direct mass spectrometry, 259
electronic noses, 261
fast GC, 250
GC methods, 249
GC/olfactometry, 250
GC×GC methods, 250
heart cutting, 250
identification of compounds, 255
infrared spectroscopy, 256
mass spectrometry, 257
specific GC detectors, 254
Aroma binding, 193
Aroma extraction
activated charcoal, 234
bias due to extraction methodology, 230, 238
choice of method, 231
cryogenic traps, 233
distillation methods, 235
defining aims and objectives, 242
dynamic headspace, 234
effect of method on recoveries, 230
flavour changes with time, 244
fractionation, 245
general considerations, 241
identification of key components, 243
internal standards, 242
off-odours, 243
purge and trap, 233
quantitative and qualitative data, 242
recoveries from solvent extraction, 237
selection criteria, 242
solvent extraction, 237
SPME, 238
stir bar, 240
Tenax trapping, 233
using volatility, 231
vacuum distillation, 235
Aromagrams, 250
Aroma–taste interactions, 301
ARP (Amadori rearrangement product), 54, 61
Artefacts
due to enzyme activity, 241
in extraction, 241
thermally induced, 241
Artificial flavouring
European definition 1974, 28
Atmospheric Pressure Chemical Ionisation (APCI)–MS, 259, 272
Batch extraction principle
flavour delivery, 215
Beer fermentation
undesirable odours, 100
Beer flavour, 154
Benaldehyde
bioformation, 97
Benzopyrone
limits in food and beverages, 34
Bioformation
effect of solvents and solubility, 113
extraction techniques, 113
flow through production, 114
genetic engineering, 107
process constraints, 112
production of specific racemates, 103–104
recent reviews, 114
reactor type, 113
use of mixed organisms, 113
value of market, 114
Biotechnology of flavours, 89
Biotransformation
using plant cells, 107
Blackcurrant flavour, 167
Blobs
in fMRI, 338
Blotters, 5
BOLD response
in fMRI, 328–329
Brain anatomy, 320
Brain function, 320, 327
Brain imaging, 319
methodologies, 327
Brassica flavours, 163
Breath-by-breath
data analysis, 282
ester delivery from confectionery, 274
flavour delivery, 273
Breath-by-breath aroma delivery, 281
Building blocks
savoury, 74
Butanedione, 60
Butter flavour, 148
C9 compounds
taste properties, 165
CAMOLA, 54, 56
Capillary GC columns, 249
Capsaicin
limit in flavours, 44
perceptual effects, 160
Caramel flavour, 80
Carbohydrate fragmentation, 58
Carry-over effects, 307
Carveol
bioformation yam cells, 107
Carvone
bioformation yam cells, 107
Cereal products, 158
Cerebrum, 321
Character-impact compound, 65,
135–136
Character-impact compounds
process flavour, 70–73
CHARM analysis, 252
Cheese flavour, 149
Cheese ripening, 149
Cheese ripening, 150
Chemical dissociation
effect on partition, 211
Chemical ionisation
direct mass spectrometry, 272
Cherry flavour, 20
Chewing gum
flavour delivery, 223
non-equilibrium in vivo model, 223
Chewing gum and flavour, 9
Chitosan
flavour delivery, 203
Chocolate flavour, 80, 152
cis-3-Hexenol, 2
Citrus flavours, 171
Citrus processing, 172
Cocoa flavour, 80
Coffee and Maillard reaction, 68
Coffee flavour, 154
Cognitive effects, 301
Compatibility of molecules, 179
Cone voltage
fragmentation control, 274
Consumer
genetic engineering, 108
Consumer testing
numbers and choice of members, 309
Consumer tests, 304, 311
methodology, 304
Consumer view
natural flavours, 90
Consumption of flavour, 136
Controlled flavour release, 202
Corona discharge, 273
Corticall pathways
somatosensatiation, 320
Coumarin
limit in flavours, 35, 44
Council of Europe
inventories concept, 34
1988 Directive, 31
role in legislation, 28
scope of 1988 directive, 33
Cranial nerves, 321
Cream flavour, 148
Cream soda, 20
<table>
<thead>
<tr>
<th>Index</th>
<th>353</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryogenic traps aroma extraction, 233</td>
<td>Distillation methods aroma extraction, 235</td>
</tr>
<tr>
<td>Cyclodextrin – as flavour reservoir, 283</td>
<td>Droplet size – emulsions, 220</td>
</tr>
<tr>
<td>Cyclodextrins, 195</td>
<td>Dynamic headspace aroma extraction, 234</td>
</tr>
<tr>
<td>Cysteine flavour conjugates, 145</td>
<td>E number system, 39</td>
</tr>
<tr>
<td>role in meat flavour formation, 75</td>
<td>Echo time in fMRI, 330</td>
</tr>
<tr>
<td>Cytochrome P450, 93</td>
<td>Economics of flavour production, 146</td>
</tr>
<tr>
<td>Dairy flavours, 147</td>
<td>EEG brain function measurement, 327</td>
</tr>
<tr>
<td>Dalton’s law, 192</td>
<td>Electronic noses aroma analysis, 261</td>
</tr>
<tr>
<td>Damascenone raspberry flavour, 17</td>
<td>Electrospray ionisation direct MS in the liquid mode, 280</td>
</tr>
<tr>
<td>Data acquisition in fMRI, 330</td>
<td>Electrostatic polymer–flavour interactions, 184</td>
</tr>
<tr>
<td>realignment in fMRI, 334</td>
<td>EMG for determination of swallowing times, 340</td>
</tr>
<tr>
<td>slice timing in fMRI, 334</td>
<td>Empirical modelling, 224</td>
</tr>
<tr>
<td>Data analysis in fMRI, 333</td>
<td>Emulsifiers effect on partition, 211</td>
</tr>
<tr>
<td>sensory data, 309</td>
<td>Emulsion mass transfer, 219</td>
</tr>
<tr>
<td>Data-driven models of flavour delivery/release, 207</td>
<td>partition coefficient, 212</td>
</tr>
<tr>
<td>4-Decanolide – bioformation, 96</td>
<td>Emulsion-based flavours, 13</td>
</tr>
<tr>
<td>Deoxyosones, 54</td>
<td>Encapsulation, 178, 202</td>
</tr>
<tr>
<td>reaction to produce flavours, 55</td>
<td>1,2-Enolisation, 53</td>
</tr>
<tr>
<td>Descriptive analysis, 301</td>
<td>2,3-Enolisation, 58</td>
</tr>
<tr>
<td>Detection limits GC/MS, 232</td>
<td>Encapsulation materials used, 179</td>
</tr>
<tr>
<td>in vivo monitoring, 269</td>
<td>Enzyme modification for specific substrates, 104</td>
</tr>
<tr>
<td>MS, 257</td>
<td>Enzyme technology, 101</td>
</tr>
<tr>
<td>Dicarbonyl formation, 61</td>
<td>manipulation of reactions, 102</td>
</tr>
<tr>
<td>Difference from control tests, 303</td>
<td>Enzymes formation of artefacts during aroma isolation, 241</td>
</tr>
<tr>
<td>Diffusion of flavours, 184, 186, 199</td>
<td>from genetically modified organisms, 109, 111</td>
</tr>
<tr>
<td>Dimethyl resorcinol, 2</td>
<td>from plants, 140</td>
</tr>
<tr>
<td>Dimethyl sulfide raspberry flavour, 17</td>
<td>plant cell suspensions, 105</td>
</tr>
<tr>
<td>Direct mass spectrometry, 259</td>
<td>plant cells, 104</td>
</tr>
<tr>
<td>analysis of tastants, 270</td>
<td>plant sources, 104</td>
</tr>
<tr>
<td>assigning ions to compounds, 277</td>
<td>Episuite, 214</td>
</tr>
<tr>
<td>background, 271</td>
<td>Epoxidation by biotransformation, 93</td>
</tr>
<tr>
<td>breath sampling, 271–283</td>
<td>Essential oil clarification, 12</td>
</tr>
<tr>
<td>calibration, 276</td>
<td>Esterification bioformation in organic solvents, 103</td>
</tr>
<tr>
<td>chemical ionisation, 272</td>
<td>bioformation of flavours, 102</td>
</tr>
<tr>
<td>compound identification, 277</td>
<td>Ethanol flavour solvent, 12</td>
</tr>
<tr>
<td>effect of processing conditions, 287</td>
<td>Ethics and regulations sensory testing, 308</td>
</tr>
<tr>
<td>electron–impact, 271</td>
<td>Ethyl acetate raspberry flavour, 17</td>
</tr>
<tr>
<td>fruit quality, 289</td>
<td>Ethyl methyl phenyl glycidate, 7</td>
</tr>
<tr>
<td>future developments, 290</td>
<td>measuring in vivo flavour delivery, 280</td>
</tr>
<tr>
<td>miniaturisation, 290</td>
<td>miniaturisation, 290</td>
</tr>
<tr>
<td>process flavours, 286</td>
<td>process flavours, 286</td>
</tr>
<tr>
<td>reagent ions, 272</td>
<td>reagent ions, 272</td>
</tr>
<tr>
<td>MS sampling frequency and detail, 283</td>
<td>MS sampling frequency and detail, 283</td>
</tr>
<tr>
<td>soft ionisation, 271</td>
<td>suppression, 277, 286</td>
</tr>
<tr>
<td>tomato aroma, 289</td>
<td>tomato aroma, 289</td>
</tr>
<tr>
<td>Discrimination tests, 296</td>
<td>Discrimination tests, 296</td>
</tr>
<tr>
<td>Distal stimulus, 267</td>
<td>Distal stimulus, 267</td>
</tr>
<tr>
<td>Topic</td>
<td>Page(s)</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Ethyl octanoate partitioning behaviour</td>
<td>218</td>
</tr>
<tr>
<td>European legislation background</td>
<td>30</td>
</tr>
<tr>
<td>current situation</td>
<td>48</td>
</tr>
<tr>
<td>definition of natural 2008</td>
<td>47</td>
</tr>
<tr>
<td>interpretation</td>
<td>40</td>
</tr>
<tr>
<td>process flavour</td>
<td>43</td>
</tr>
<tr>
<td>role of EFSA</td>
<td>41</td>
</tr>
<tr>
<td>2008 definitions</td>
<td>42</td>
</tr>
<tr>
<td>2008 onwards</td>
<td>41</td>
</tr>
<tr>
<td>traditional processes</td>
<td>42</td>
</tr>
<tr>
<td>European list of permitted flavours</td>
<td>45</td>
</tr>
<tr>
<td>Experimental design</td>
<td>306</td>
</tr>
<tr>
<td>sensory tests</td>
<td></td>
</tr>
<tr>
<td>Extraction</td>
<td>232</td>
</tr>
<tr>
<td>static headspace</td>
<td></td>
</tr>
<tr>
<td>Extraction of flavours</td>
<td>142</td>
</tr>
<tr>
<td>plants</td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>138</td>
</tr>
<tr>
<td>effect on ice cream flavour formulations</td>
<td></td>
</tr>
<tr>
<td>Fatty acid</td>
<td>99</td>
</tr>
<tr>
<td>bioformation</td>
<td></td>
</tr>
<tr>
<td>FD (dilution factor)</td>
<td>298</td>
</tr>
<tr>
<td>FEMA</td>
<td>26</td>
</tr>
<tr>
<td>role in legislation</td>
<td></td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>99</td>
</tr>
<tr>
<td>biotransformation</td>
<td></td>
</tr>
<tr>
<td>Fick’s law</td>
<td>184</td>
</tr>
<tr>
<td>FID flame ionisation detectors</td>
<td>254</td>
</tr>
<tr>
<td>Film reactor</td>
<td>287</td>
</tr>
<tr>
<td>Flame ionisation detectors (FID)</td>
<td>254</td>
</tr>
<tr>
<td>Flame photometric detector – GC</td>
<td>233</td>
</tr>
<tr>
<td>Flavour analysis</td>
<td>268</td>
</tr>
<tr>
<td>complexity</td>
<td>269</td>
</tr>
<tr>
<td>sensitivity</td>
<td></td>
</tr>
<tr>
<td>speed for in vivo monitoring</td>
<td>268</td>
</tr>
<tr>
<td>Flavour balance</td>
<td>6</td>
</tr>
<tr>
<td>Flavour binding</td>
<td>195</td>
</tr>
<tr>
<td>carbohydrates</td>
<td></td>
</tr>
<tr>
<td>chemical forces</td>
<td>193</td>
</tr>
<tr>
<td>competition for binding sites</td>
<td>197</td>
</tr>
<tr>
<td>lipids</td>
<td>194</td>
</tr>
<tr>
<td>polysaccharides</td>
<td>195</td>
</tr>
<tr>
<td>proteins</td>
<td>10, 196</td>
</tr>
<tr>
<td>starch</td>
<td>10, 196</td>
</tr>
<tr>
<td>to foods</td>
<td>193</td>
</tr>
<tr>
<td>Flavour characteristics</td>
<td>3</td>
</tr>
<tr>
<td>Flavour complexity</td>
<td>6</td>
</tr>
<tr>
<td>Flavour composition and food matrix</td>
<td>8</td>
</tr>
<tr>
<td>Flavour concentrations</td>
<td>269</td>
</tr>
<tr>
<td>in vivo</td>
<td></td>
</tr>
<tr>
<td>Flavour creation</td>
<td>22</td>
</tr>
<tr>
<td>art or science?</td>
<td></td>
</tr>
<tr>
<td>Flavour delivery</td>
<td>215</td>
</tr>
<tr>
<td>batch extraction principle</td>
<td></td>
</tr>
<tr>
<td>breath-by-breath</td>
<td>273</td>
</tr>
<tr>
<td>chitosan</td>
<td>203</td>
</tr>
<tr>
<td>complexity</td>
<td>202</td>
</tr>
<tr>
<td>diffusion</td>
<td>199</td>
</tr>
<tr>
<td>dynamic conditions</td>
<td>197</td>
</tr>
<tr>
<td>effect of gas flow</td>
<td>222</td>
</tr>
<tr>
<td>effect of saliva</td>
<td>198</td>
</tr>
<tr>
<td>equilibrium conditions</td>
<td>197</td>
</tr>
<tr>
<td>ethanolic beverages</td>
<td>285</td>
</tr>
<tr>
<td>hard candies</td>
<td>201</td>
</tr>
<tr>
<td>interfacial mass transfer</td>
<td>198</td>
</tr>
<tr>
<td>kinetics</td>
<td>197</td>
</tr>
<tr>
<td>liquid foods</td>
<td>200</td>
</tr>
<tr>
<td>measuring tastants in vivo</td>
<td>270</td>
</tr>
<tr>
<td>models</td>
<td>207</td>
</tr>
<tr>
<td>multifactorial studies</td>
<td>203</td>
</tr>
<tr>
<td>non-equilibrium model</td>
<td>199</td>
</tr>
<tr>
<td>penetration theory</td>
<td>199</td>
</tr>
<tr>
<td>semi-solid foods</td>
<td>200</td>
</tr>
<tr>
<td>solid foods</td>
<td>201</td>
</tr>
<tr>
<td>stagnant film model</td>
<td>199</td>
</tr>
<tr>
<td>viscosity</td>
<td>200</td>
</tr>
<tr>
<td>viscous foods</td>
<td>285</td>
</tr>
<tr>
<td>Flavour delivery systems</td>
<td>202</td>
</tr>
<tr>
<td>Flavour effects on texture and stability</td>
<td>9</td>
</tr>
<tr>
<td>Flavour formation</td>
<td></td>
</tr>
<tr>
<td>secondary plant metabolic pathways</td>
<td>106</td>
</tr>
<tr>
<td>Flavour formulation</td>
<td></td>
</tr>
<tr>
<td>compounding</td>
<td>15</td>
</tr>
<tr>
<td>number of ingredients</td>
<td>15</td>
</tr>
<tr>
<td>raspberry as example</td>
<td>16</td>
</tr>
<tr>
<td>temperature at consumption</td>
<td>11</td>
</tr>
<tr>
<td>Flavour glycosides</td>
<td>101, 145</td>
</tr>
<tr>
<td>as flavour release systems</td>
<td>112</td>
</tr>
<tr>
<td>Flavour industry</td>
<td></td>
</tr>
<tr>
<td>history</td>
<td>1, 140</td>
</tr>
<tr>
<td>value</td>
<td>146</td>
</tr>
<tr>
<td>Flavour intensity of mixtures</td>
<td>6</td>
</tr>
<tr>
<td>Flavour legislation</td>
<td></td>
</tr>
<tr>
<td>methods</td>
<td>24</td>
</tr>
<tr>
<td>overview</td>
<td></td>
</tr>
<tr>
<td>Flavour matching</td>
<td>21</td>
</tr>
<tr>
<td>Flavour perception</td>
<td>129, 190</td>
</tr>
<tr>
<td>temporal measurement</td>
<td>299</td>
</tr>
<tr>
<td>Flavour precursors</td>
<td>139</td>
</tr>
<tr>
<td>enzymic hydrolysis</td>
<td>101</td>
</tr>
<tr>
<td>Flavour production</td>
<td>15</td>
</tr>
<tr>
<td>Flavour profiles</td>
<td>302</td>
</tr>
<tr>
<td>Flavour receptors</td>
<td>129</td>
</tr>
<tr>
<td>modelling structure for optimum binding</td>
<td>131</td>
</tr>
<tr>
<td>signal processing</td>
<td>130</td>
</tr>
<tr>
<td>Flavour reformulation</td>
<td></td>
</tr>
<tr>
<td>low and regular fat foods</td>
<td>283</td>
</tr>
<tr>
<td>using direct MS measurements</td>
<td></td>
</tr>
<tr>
<td>Flavour release</td>
<td>186, 281</td>
</tr>
<tr>
<td>See flavour delivery</td>
<td></td>
</tr>
<tr>
<td>Flavour skeleton</td>
<td>4</td>
</tr>
</tbody>
</table>
Index

Flavour solvents, 11
Flavour stability
during processing, 10
storage, 10
Flavour thresholds, 131
Flavouring
European definition, 28
Flavourists
analyses and formulation, 2
approach to formulation, 1
and customers, 22
reconstitution, 3
sensory panels, 8
training and mentoring, 8
Flavours
dispersed, 13
spray-dried, 14
FlavrSavr
generically modified tomato, 110
Flory and Huggins equation, 182
fMRI, 319
adaptation to flavour stimuli, 339
administration of flavour stimuli, 338
aroma imaging, 343
control solutions for flavour studies, 341
effects on subjects, 338
flavour paradigm design, 338
flavour processing, 338
imaging cortical association, 344
imaging fat 'taste', 345
imaging texture, 345
subject choice, 341
swallowing and aroma signal, 339
taste imaging, 343
timing of stimuli paradigm, 340
fMRI methodology, 328
Fractionation
preparative GC, 248
silicic acid, 247
using HPLC, 247
Fractionation of aroma, 245
acid/base, 245
Fragrances from plants, 174
Free volume of polymer systems, 181
Fresh flavours, 164
Fruit flavour
manipulation through genetic engineering, 111
FTNFR-definition, 27
Functional magnetic resonance imaging (fMRI), 319
Furaneol
bioformation, 96
flavour enhancement, 5
γ-Decalactone pre- and post harvest, 146
Garlic, 161
Gas-solid volatile distribution, 289
GC detectors, 254
GC/EI/APCI/MS
assigning ions to compounds, 278
GC/EI/PTR/MS
assigning ions to compounds, 278
GC/MS
sensitivity limits, 232
GC/olfactometry, 244, 250, 257
identification of key odourants, 251
optimum operating conditions, 251
GCO (gas chromatography olfactometry), 65
GC×GC methods, 250
Gelatin gels
modelling flavour delivery, 225
Gels
modelling flavour delivery, 224
General linear model (GLM)
fMRI, 336
Genetically modified organisms, 108
Glassy state, 178
Glyoxal, 58
G-protein receptors, 130
Grapefruit flavour, 167
GRAS, 15
comparison with EU list, 36
role in legislation, 26
Grassy flavours, 164
Green flavours, 164
Group contribution methods for estimating physical
properties, 209
Gum acacia
encapsulant, 14
Gustatory pathways, 321, 323
schematic, 322
Harmonisation of legislation, 48
Head movements
in fMRI, 334
Headspace dilution
modelling, 216
Heart cutting
GC technique, 250
Henry’s law, 192
Hexanal
continuous production from linoleic acid, 114
Heyns reaction, 52
Heyns rearrangement products (HRP), 54
High-resolution gas chromatography (HRGC), 249
Hildebrand equation, 180
HPLC analysis, 254
HRF
in fMRI, 337
HRP (Heyns rearrangement product), 54
Humidity
effect on Maillard reaction, 287–288
Index

HVP (hydrolysed vegetable protein), 151
Hydration
biotechnology, 94
Hydrogen cyanide
limit in flavours, 35, 44
Hydrolases
for flavour bioformation, 102
Hydrophobicity of flavours, 194
4-Hydroxy-5-methyl-3(2H)-furanone (norfuraneol), 55

Identification of compounds
CAMOLA approach for Maillard products in direct MS, 279
direct MS, 270, 277
isobaric compounds in direct MS, 278
labelled precursors in direct MS, 279
Immobilsed plant cells, 107
Impurities in flavours
metals, 34
natural substances, 35, 44
Inclusion complexes - starch/aroma, 196
Infinite dilution, 192
Infrared spectroscopy, 256
Instrumental sensory correlations, 266, 281–282, 312, 314
Intensity rating tests, 298
Interfacial mass transfer, 198
Internal standards
aroma extraction, 242
International preferences and tastes, 19
IOFI
guidelines on process flavours, 74
opinion on legislation, 36, 48
Ionisation energies, 272
Ionones
raspberry flavour, 17
5′-Inosine monophosphate (IMP), 70
Isobaric compound identification, 278
Isolation techniques
effect on compound recoveries, 230
Isothiocyanates, 163

Jasmine
raspberry flavour, 18
JECFA
role in legislation, 27
Kinetics
flavour delivery, 197
Kovats indices, 256

Labelling information for consumers
European situation, 39
Labelling requirements
European situation, 38

Lactones
bioformation, 96
dairy notes, 5
peach note, 4
Latin square design, 307
Legislation
natural flavours, 90
Legislation and flavour discovery, 25
Lemon oil, 9
Likens–Nickerson aroma extraction, 235
Limitations
electronic noses, 261
fMRI measurements, 341
GC/olfactometry, 251
HPLC analysis, 254
identification of compounds by direct MS, 270
model mouths, 267
modelling, 214, 224
SPME, 239
Limonene
biotransformation, 92
Line scales, 298
Linear retention indices (LRI), 256
Lipid effect, 213
Lipid–flavour interactions, 194
Lipid interactions
pathway, 63
Lipid interactions with Maillard products, 62
epoxy-2-alkenals, 64
Liposomes, 202
Lipoxygenase pathway
 genetic engineering, 112
Liquid flavours, 11
oil soluble, 13
water soluble, 11
Log P, 214
effect on flavour delivery, 225
predicting maximum flavour delivery, 226

MAFF
UK legislation 1965, 31
Maillard flavour formation
cysteine and meat flavour, 75
effect of pH, 76
effect of sugars and amino acids, 75
effect of time/temperature, 76
effect of water, 76
factors influencing, 74
optimisation, 77
reaction kinetics, 77
role of thiamine, 78
sulfur sources, 79
yeast, 79
Maillard intermediates
flavour precursors, 54
Maillard reaction
- aroma compounds, 65–67
- coffee, 68
  general aspects, 51
  general scheme, 52
  monitoring by direct MS, 278
  taste compound formation, 69
Main effects
- sensory data analysis, 310
Maltodextrin
- spray-dried flavours, 14
Maltol
- bioformation, 96
  flavour enhancement, 5
Marangoni effect, 286
Mass spectra, 258
Mass spectrometers
- compound identification, 257
  low and high resolution, 257
Mass transfer
- effect of gas flow, 222
  Mass transfer coefficient, 222
    boundary layer, 217
  overall, 217
Mass transport of flavour in polymer systems, 185
Mastication
flavour delivery, 201
Matching aroma delivery
- in low and regular fat foods, 281
Meat flavour
- patents, 55
  pathway, 57
Meaty flavour
- sulfur compounds, 68
MEG
- brain function measurement, 327
Menthofuran
- limit in flavours, 44
Metal oxide aroma sensors, 261
Methane thiol
- bioformation, 100
Micro-organisms
- source of enzymes, 91
Mint compounds
- flavour, cooling and bitter thresholds, 142
Model quality, 210
Modelling
- breath aroma concentrations, 221
  delivery from dynamic systems, 214
    empirical, 224
  emulsions, 214
  equilibrium conditions, 208
  flavour delivery, 207
    flow chart, 215
  headspace dilution method, 216, 218
    in vitro dynamic, 208
    in vivo, 208
in vivo delivery, 220
in vivo delivery from emulsions, 222
information needed, 207
limitations, 214
mass transfer, 216
maximum delivery in gelatin gels, 225
software, 214
using time-intensity data, 224
validation, 208, 216, 227
volatile transfer in the upper airway, 223
Monoterpane biotransformation, 91
MS-Nose, 273
Mushroom, 161

Natural flavouring
- European definition 1974, 28
  lemon as example, 40
- USA definition, 26
Natural flavours
- biotechnology, 89
  challenges in production, 128
  consumer view, 90
  usage, 89
Natural sources
- European definitions, 29
- Natural sources of flavour, 127
Negative lists
- legislation, 25
  NIF analysis, 253, 297
Non-equilibrium model
- chewing gum, 223
Non-equilibrium model of flavour delivery, 199, 215
Norfuraneol, 55
Norisoprenoid
- biotransformation, 95
Number of components in flavours, 229
Number of flavour chemicals, 132
Octanol/water partition coefficient, 214
Odour activity value, 251, 268
Odour activity values for coffee, 134
Odour database, 256
Odour fatigue
- in GC/olfactometry, 251
Odour thresholds
- in different media, 137
  for terpenoids, 132
Off-flavours, 138
Oil fraction, 220
Olfactory pathways, 323
  schematic, 324
On-line MS, 266
Interfering factors, 270
Onion flavour
- bioformation, 107
  effect of cooking, 162
Oral somatosensory pathways, 325
schematic, 326
Orange oil, 172
composition, 173
Orange processing, 172
OSME analysis, 253, 297
Oxygen permeability encapsulation systems, 185
Panellist fatigue, 298, 306
Paradigm design in fMRI, 332
Partial least squares, 313
Partition equilibrium and in vivo comparison, 221
in vivo considerations, 221
Partition coefficient, 191, 208
air/water, 194
air/emulsion, 212
effect of lipid, 211
emulsions, 218
environmental experiences, 210
estimation using QSPR, 209
oil/water, 194
relationships between Kaw and Kow, 211
Peach flavour, 169
Pear flavour, 167
Penetration theory of flavour delivery, 199
Pentane-dione, 58, 60
Pentylpyridine formation, 63
Perillic acid bioformation, 92
Peripheral nervous system (PNS), 320
pH and effect on Strecker products, 62
Phenylacetaldehyde formation pathway, 62
Phenylethanol bioformation, 98
Physical chemistry, 191
Physical properties of flavours encapsulation, 180
Plant organ cultures bioformation of flavour, 105
Plasticisation of polymers, 181, 186
Popcorn flavour, 80
Positive lists legislation, 24
Post-harvest changes in flavour, 145
Powdered flavours, 11
Preference mapping, 312
Primary character, 3
Principal component analysis (PCA), 311
Process flavour manufacture, 74
reaction scheme, 56
difficulty with definition, 32
EU conditions for manufacture, 43
European definition 1995, 29
other ingredients, 79
savoury, 78
sweet products, 80
Proline role in bread aroma, 75, 158
PROX brain imaging, 345
Propylene glycol, 11
acetal and ketal formation, 11
Protein-based delivery systems, 203
Proteins aroma binding, 196
effect on allyl thiocyanate, 137
Proton affinity, 272
ethanol, 286
values for odourants, 273
Proton transfer reaction, 272
Proton transfer reaction–mass spectrometry (PTR-MS) principles, 275
Psychophysics of flavour, 131
PTR-MS, 276
calculation of amounts analysed, 277
Pulegone limit in flavours, 35, 44
Purge and trap aroma extraction, 233
QSPR flavour reformulation, 282
gel flavour delivery model, 224
QSPR modelling general procedures, 210
solubility, 210
Quality control checks using aroma profiles, 244
using sensory test, 303
Quality of flavours, 136
Quantitative structure–property relationship (QSPR), 195
Quassin limit in flavours, 44
Racemate resolution, 103
RAS validation of delivery models, 214
Raspberry flavour, 168
Raspberry flavour composition, 16, 18
Raspberry ketone bioformation, 98
Reaction kinetics Maillard flavour formation, 77
Reagent ions direct mass spectroscopy, 272
Recombinant DNA (rDNA) plant techniques, 110
Index

359

Recoveries
- solvent extraction, 237
- SPME, 238

Regions of interest (ROI)
in fMRI, 338

Release of flavours, 184

Repetition time
in fMRI, 332

Restrictions on natural ingredients in flavours, 46
- GC compound identification, 255
- Reversible flavour binding, 196

SAFE (solvent-assisted flavour extraction), 243

Safety of flavours, 147

Safrole
- limit in flavours, 35, 44

Salting-out effect, 195

Santonin
- limit in flavours, 35, 44

Savoury flavours, 78

Scatchard equation, 196

SCOOP
- flavour specification, 37
- Scoville units, 160

Secondary characteristics, 4

Selected ion flow tube–mass spectrometry (SIFT-MS), 275

Selected ion monitoring (SIM), 258

Semi-solid foods
- flavour delivery, 200

Sensitivities of flavours, 7

Sensory analysis, 296
- data analysis of TI results, 300
- effect of administrative route, 300
- partial least squares, 313
- references, 298
- training needs, 296

Sensory quality control tests, 303

Sensory testing
- administration, 304
- avoiding bias, 305
- carry-over effects, 307
- data analysis, 309
- ethics, 308
- evaluation of panellist/judge performance, 309
- locations for consumer tests, 305
- panellist/judge training and criteria, 308
- power required, 311
- protocols for sample presentation, 305
- selection of judges, 308

Sensory tests
- experimental design, 306
- Sesquiterpenes
- biotransformation, 95

SIFT-MS, 275

Silicic acid
- disadvantages, 248
- fractionation of aromas, 248
- Smoke flavour
- choice of woods, 36
- difficulty with definition, 33
- 2003 EU Directive, 40
- SNIF analysis, 253
- Software for modelling, 214
- Solid foods
- flavour delivery, 201
- Solid-phase micro-extraction (SPME), 238

Solubility parameters
- synthetic and natural biopolymers, 181
- Solvent extraction
- aroma isolation, 237

Solvants
- essential oils, 173

Sorption isotherms
- polymer-solvent systems, 183
- Sorption properties of flavours, 182

Spatial smoothing
in fMRI, 334

Species-specific meat flavour, 78–79

Spice flavours, 159

Spider diagrams, 302

SPME, 238
- operation, 239
- recoveries, 238

Stagnant dried flavoured, 14, 178

Starter cultures, 149–150
- genetically modified, 109

Static headspace methods, 232

Statistical analysis
- sensory data, 309

Statistical considerations
in fMRI, 332, 337

Steam distillation, 143
- aroma extraction, 235

Stereochemical effects on flavour, 132, 141

Steven’s law, 267

Stimuli
- association in brain, 325
- interaction in brain, 325

Stir bar
- aroma extraction, 240

Storage
- stability of flavours, 138

Storage studies
- flavour changes, 244

Strawberry flavour, 4, 168

Strecker aldehydes, 64

Strecker intermediates
- effect of humidity, 288
- Strecker reaction, 52, 61
Index

Strecker aldehydes, 61
Sugar fragmentation pathway, 60
Sulfur compounds
  aroma and origin, 70
Superadditive effects
  brain imaging, 344
Supercritical carbon dioxide
  aroma extraction, 237
Super-tasters
  brain imaging, 345
Suppression
  ion sources, 277
Surface area
  flavour delivery, 201
Sweet process flavours, 80
Sweeteners, 158

Taste compounds
  analysis by HPLC, 255
  Maillard, 69
Taste effects in flavour formulation, 5
Taste enhancement, 5
Taste-modifying compounds, 69
Taste thresholds
  for terpenoids, 132
Taste–aroma interactions, 174
Taste–smell interactions, 301
TCA (thiazolidine carboxylic acids), 54
Tea flavour, 153
Temporal dominance of sensation (TDS), 299
Temporal filtering
  in fMRI, 336
  temporal measurement of flavour perception, 299
Tenax trapping
  aroma extraction, 233
Terpene biosynthesis
  genetic modification, 111
Theoretical models
  emulsion flavour delivery/release, 219
  theoretical models of flavour delivery/release, 207
  theory of encapsulation, 179
Thermal desorption
  aroma extraction, 236
Thermodynamics in flavour release, 191
Thiamine
  role in Maillard reaction, 78
Thiols
  aromas in process flavours, 70
Threshold tests, 297
Thujone
  limit in flavours, 35, 44

Time–intensity
  use in modelling, 224
Time–intensity rating, 299
Timing of flavour delivery during eating, 268
Tomato flavour, 169
  genetic modification, 110
Triacetin, 12
Trimethyl citrate, 12
Trimethylpyrazine, 2
Tropical fruit flavours, 170
Tutti-frutti, 20

Ultra-high-field scanners
  fMRI, 346
Umami taste compounds, 69
United States
  flavour legislation, 26
Vacuum distillation
  aroma extraction, 235
Vagus nerve, 321
Validation of models, 227
van der Waals forces, 193
Vanilla flavour, 3, 170
Vanillin
  bioformation, 97
  bioformation by chilli cells, 107
  bioformation from ferulic acid, 108
Vapour pressure, 192, 209
Variation in aroma delivery
  effect of people, 281
Variation in olfactory perception
  effect of people, 344
Verbena
  bioformation, 93
Viscosity
  flavour delivery, 200
Volatility
  to extract aroma compounds, 231
Water clusters, 273
Wine flavour, 156
WONF
  definition, 27
Yeast
  role in Maillard reaction, 79
  yeast extract flavour, 68