Index

Page numbers in *italics* refer to figures; those in **bold type**, to tables.

abductive reasoning, 69–70

Absolut Vodka
bottle design and properties, 159
number of bottles per box, 160, *160, 161, 161–162, 162*
supply chain logistics, 160–161
absorption, from packaging contents, *103*
academic research, 12, 29, 35, 205
stages in methodology, 68, 68–70
adhesives, electrically controlled, 171–174
airflow, in food packaging, 85, 86, 86, 88
aluminium, 104, 111, 159, 167
Alvedon® (paracetamol) pills
packaging systems, 167, *169*
production and supply, 166–167
redesign impacts, 167–170, **170**
apportionment
case studies
paracetamol pills and packs, 167–170
salmon packaging, 149–154
toothpaste tubes, 154–158
wine and spirits, boxes of bottles, 158–162
as function of packaging, 5
supply and demand perspectives, 74–76, 75, 149
Arla Foods company logistics, 191–196, *192, 194, 196*
artwork, design software, 56

aseptic filling process, 106, *106*
assessment see evaluation
automated packaging equipment, 142, 143, 161

bag-in-box wines, 117, 118
barcodes, 6, 78, 184, 185, 191
benchmarking, 52, 54
best-before dates, 107, 182–183
biosensor tags, 183–187, *184, 186*
blister packs, usability, 167–168, 170, 171–172, 173

bottles
alternatives to use of glass, 116–118, **118, 198–199**
conventional wine packaging system, 114–115, 158
corks and screw caps, 118, 158
number per box, 159–162, *160, 161*

brainstorming sessions, 52
brand image, 79, 132, 196–197

businesses
competence in packaging design, 66–67
models and strategies, 44, 122
processes impacted by packaging, 6
social responsibility, 18, 20

cans (metal), 105–106, 108
compared with cartons, 109–113, *110, 111, 112, 112*

Cape Citrus company, 91, 92
carbon dioxide equivalents (CO2e)
definition, 24
of discarded waste, 152
in food retail supply chains, 31, 94, 137, 150
cardboard boxes
beneficial design features, 134, 135
citrus storage and transport, 91, 92–94, 93
detergent powder, fill rate, 126, 129–131
grapes, retail (secondary) packages, 85–86
gravlax salmon secondary packaging, 151, 152
for hand towels, portability, 175–177
replacement by use of CDM, 172
shelf-ready toothpaste packaging, 154, 155, 155–156, 156
size/space efficiency, pill pack cartons, 167, 168, 169–170
wine bottle secondary packaging, 115–116, 158, 159
cartons
as alternative to glass bottles for wine, 117
flexible, aseptic filling, 106, 106
secondary and tertiary packaging, 119–123
Tetra Recart retortable package, 108–113, 109, 114
case study analysis, 68–70, 69, 81–82
cell phones see mobile phone packaging
certification, organic and environmental, 57
child-resistant packaging, 7, 168
circular systems (packaging lifecycle), 38–39
citrus fruits
handling and storage conditions, 91–92
improved packaging design for protection, 92–94, 93
packaging for export, 90–91
cleaning workers, 174–175, 176
communication
within design teams, 48
as function of packaging, 6, 79
product claims on packaging, 197–202
Sony Ericsson Mobile (cell phone) products, 187–190, 189
technology development, 77–78, 181
terminology problems, 9
Comparative Packaging Assessment (COMPASS©) software tool, 56
compass for sustainable packaging design
concept, research methodology, 68, 68–70, 81
direction components, 65–66, 66, 71–79
strategic aims, 57–58, 64, 65
users and modes of use, 66–68
computer aided design (CAD) tools, 56–57
concentrated products, 126, 168–169
conductive packaging, 171, 172
conservation of natural resources, 17, 20, 73
Consumer Goods Forum, 57
consumers
choice of products, 22, 89, 196–202
effect of display arrangement on sales, 120–121, 121
KANO customer satisfaction model, 54, 55
packaging material preferences, 102, 116, 117–118, 198–199
perceptions of waste, 25–26, 105
product testing, using display models, 187–188, 190
protection regulations, 7, 168
purchased pack size needs and choices, 76, 152, 201, 202
research on needs and requirements, 37–38, 50–52, 51
responses to damaged goods, 94, 96, 123
see also user-friendliness
containment function, 4
controlled delamination materials (CDM)
ease of opening and security applications, 171–172, 172, 173
invention and development potential, 171, 173–174, 174
secondary packaging replacement, 171, 172, 173, 173
convenience function, 5, 170
convergence phase (design process), 49, 53–57
corks, carbon footprint, 118
corporate social responsibility (CSR), 18, 20
corrugated board
handling and insulation qualities, 137
strength properties, 94
used for pallets, 141, 143, 146
wraparounds for vodka bottles, 160
see also cardboard boxes
costs
comparison for packaging and product waste, 25, 26
effects of using cheapest options, 94, 95, 99, 99
fixed production costs, 75, 116
goods prices for consumers, 89, 109, 113, 152, 201
impacts of apportionment change, 161, 162, 168–170
investment in packaging improvements, 121–122, 129, 178
shrinkage (returnable container loss), 192, 195
trade-offs with value components, 42–43, 185, 186
transportation, 117, 129–130, 137, 145
Council of Supply Chain Management Profession (CSCMP), 13
creativity, in design process, 49, 50, 145
dairy products
returnable container tracking, 191–196
separable packaging, 200–201, 201
decision-making
in design process, 36, 39–44, 45, 48
impacts and limitations, 12, 63
tools for support, 53–58, 67–68
design
legal protection, 7–8
process management, 45–48, 66–68
redesign for sustainability improvement, 118–123
scope, layers of needs and requirements, 35–39, 36
strategic decisions, 39–44
sustainable development impacts, 28
tools and guidance, 49–58, 64–71, 66, 205
‘Design Thinking’ (Plattner Institute), 45–46
detergent powder (Via brand)
current packaging, 126–127, 127, 128
packaging system improvements, 128–131, 129, 130, 131, 172
supply chain structure, 127–128, 128
dishwashing tablets, box size, 197, 197–198
distribution
alternative arrangements for ice cream, 134–136, 136
chill chain quality monitoring, 185
direct and indirect channels, 38
repacking before delivery, 167
as role of packaging, 17, 21, 22
use of returnable transport packaging (RTP), 191–193
warehouse storage and picking, 193
wholesaler centres, 87, 116, 143–144, 155
divergence phase (design process), 49, 50–53
drinks, packaging, 118–119
environmentally friendly PlantBottle, 198, 198–199
liquor bottle boxes, 159–162
milk roll containers, 191–193, 192
orange juice cartons, 119–123
ring-pull cans, CDM use, 172
wine bottles, 114–118
drugs see pharmaceutical products
e-commerce, 22–23

economics
 economic viability in design thinking, 45–46, 47
 global business value of packaging, 1
 supply chain efficiency, 85, 89, 93, 153
 sustainable profitability, 20–21
see also costs

Efficient Consumer Response (ECR) guidelines, 57

‘Ektorp’ sofas (IKEA)
 improved box design, 96, 96–99, 97, 98
 previous (cheap) knock-down boxing, 94–96, 95
 sustainability impacts of redesign, 98, 99

electronics products
 cell phone marketing comparisons, 187–190, 189, 190
 theft and fraud prevention, 171–172, 173
 empathy maps, 53

environmental issues
 carbon footprint of materials, 115, 116–118
 design evaluation tools, 54–56
 environmental burden of packaging, 102–103, 105, 111, 121
 impacts of over- and under-packaging, 23–25, 24, 73
 legislation and protection policies, 8, 57
 package size and consumer perceptions, 188–190, 190, 191
 sustainable production aims, 20, 89, 188

ethnographic observations, 50

EU (European Union)
 emissions and sustainability targets, 17
 environmental protection measures, 8
 health and safety, cleaning work, 174–175, 179
 labelling regulations, 7, 182
 standard (wooden) pallet design, 86, 115, 119–121, 120, 121

evaluation
 design compass assessment, 69, 69–70
 end user survey insights, 176–177
 need for holistic value-chain approach, 122–123
tools, 53–56, 55, 119–121, 121

Extended Producer Responsibility (EPR) policies, 8

extended shelf life (ESL) packaging, 106–107

fill rate
 case studies
 detergent powder, 126–131
 ice cream, 132–139
 IKEA loading ledges, 139–146
 claims and pack sizes, 197, 197–198
 effects of apportionment change, 156, 156, 157
 space efficiency of cartons, 111–113
 sustainable development impacts, 73–74, 125

flat-pack furniture, 94–99

focus groups, 51

food
 environmental impact, products compared, 149–150, 150
 labelling for consumer information, 182–183, 199–200
 life cycle analyses, 24–25
 packaging legislation, 7
 processing and filling technologies, 105–107
 protection against spoilage, 102–103
 quality monitoring technologies, 183, 183–187
 sector importance and challenges, 82
 special offers, waste and sustainability, 201, 202
 supply chain logistics, 30, 31, 86–89, 87, 91–92
 undesired transfers to/from packaging, 103
 waste, 25, 83, 89, 182–183, 200–201

form and function integration, 41–42

fruit imports, packaging solutions
 citrus fruit, 90–94
 table grapes, 84–90
functions of packaging, 1, 3–6, 27–28, 36
furniture, self-assembly, 94–99
glass
hot filling of containers, 105
properties as packaging material, 104
weight and secondary packaging, 111, 115, 158, 159
Global Protocol on Packaging Sustainability, 57
grapes
logistical activities, 86–89, 87
packaging system (boxes and wrappings), 85–86, 86
producers and trade, 84, 84, 84–85, 89
supply chain sustainability, 89, 90
greenhouse gases (GHGs), 17, 24
guidelines, packaging design, 57
handling
care for food products, 86, 91–92
design for ease of use, 28, 77, 159
distribution centre infrastructure, 143
health problems from heavy lifting, 174–175
portion or unit size, 5
reduction in time by use of CDM, 172
time, used in design evaluation, 119–120, 120, 157–158
holistic design, 40–41, 43, 48
hot filling process, 105
hygiene products, 175–179
ice cream
brick packaging, GB Glace, 132, 132–133, 133
elliptic packaging, SIA Glass, 134, 134, 135
fill rate and sustainability comparisons, 136–139, 138
supply chain structures, 134–136, 136
ideation (design idea generation), 52–53
IKEA
attention to packaging and logistics, 139, 143–144
global product sourcing strategy, 141, 145
monitoring and costs of quality problems, 94, 95, 99
policy for damaged goods, 96
see also ‘Ektorp’ sofas; loading ledges
indicators
accumulated time-temperature, 183, 183–187, 184, 186
on-off sensors, 183–184, 185
information
case studies
mobile phone packaging, 187–191
roll containers for dairy products, 191–196
time-temperature biosensor for milk, 182–186, 186
on dosage and safety, drugs products, 166, 167
as function of packaging, 5–6, 22, 78–79
product traceability, 92
technology development, 77–78, 181
inner fill rate, 74
innovation, 39, 46, 49, 52, 81
insight mining, 50–52, 51, 176–177
intermodal transport, 127
interviews (of users), 51, 91, 121
inventory level optimization, 75–76, 142
ISO (International Standardization Organization) standards, 54, 57
KANO model of customer satisfaction, 54, 55
knock-down boxing
improved bottom-and-top box design, 96, 96–98, 97, 99
low-cost slotted containers, 94–95, 95
Krav (Swedish organic) labelling, 57, 200
labelling
‘environmentally-friendly’ symbols, 188, 198, 198–199
EU Directives and Regulations, 7, 182
identification technologies, 78
organic/environmental organization systems, 57, 154
laminated materials
 advantages and disadvantages, 104
 electrically controlled delamination, 171–174
 multilayer paperboard for cartons, 109
laws see legislation
legislation
 compliance, in design process, 37
 regulations for drug products, 166, 168
loading ledges (IKEA)
 comparison of unit load carrier materials, 140–141
 concept and design, 139–140, 140, 141, 145
 introduction impacts, 141–146, 146
locally produced baby foods, 199, 199–200
marketing
 brand advertising and differentiation, 126, 132, 134
 impact of packaging size on sales, 187–190, 191
 role of packaging, 6, 21–22, 120–121
 specifications for different markets, 91, 142, 145
materials
 case studies
 cans and cartons compared, 108–114
 secondary/tertiary packaging, juice cartons, 118–123
 wine bottles, 114–118
consumer preferences, 102, 105, 116, 117–118
recycling, 39, 104, 116
selection in packaging design, 72–73, 101, 103, 108, 140–141
types used for food packaging, 102–105
see also controlled delamination
meat packaging, 24, 102, 107, 182
mechanical damage
 cartons and cans compared, 113
effect of loading ledges in transport, 142
inadequate, consequences, 93, 95, 95–96
protection measures, 72, 85, 90–91
tracking and repair (roll containers), 193, 195
medicines see pharmaceutical products
migration, packaging to product, 7, 103, 104, 105
Millennium Development Goals (UN), 18
mobile phone packaging
 consumer and sales staff perceptions, 188–189, 189
 importance in different store types, 187–188
 packaging improvement suggestions, 189–190, 190, 191
Modified Atmosphere Packaging (MAP), 107
multiple life packaging, 38–39, 137
obsolescence, 76
onion analogy for design, 36, 36, 39, 41
openings
 elderly people and blister packs, 167–168, 170
 position on package, 126, 129
 security issues, 171–172, 173
 user-friendliness, 77, 109, 113, 178–179
oranges see citrus fruits
organic product labelling, 57
cheese, 200, 200
locally produced baby food, 199, 199–200
organizations
departments and responsibilities, 12, 37, 63
prosperity, sustainable development, 20–21
risk and gain sharing, 43–44
see also businesses
outer fill rate, 74
overpackaged products, 23, 24
oxygen, role in food spoilage, 102, 107

packaging
definition, 3
functions, 1, 3–6, 27–28, 36
history, 21–23, 108
types, terminology, 9, 9–10, 10
Packaging Impact Quick Evaluation Tool (PIQET©) software, 56

pallets
arrangement of secondary packing units, 86, 126–127, 128, 129
compared with IKEA's loading ledges, 139–141
load plan design tools, 56–57
palletizing process and equipment, 142, 159
redesign for handling and display improvements, 119–121, 120, 121
stacking height, 92–93, 133, 134
tertiary packaging for food transport, 88, 115, 133, 135
tracking information, 92
paper packaging, 104, 200
permeability of packaging, 103
personas, use in design, 53
PET (polyethylene terephthalate)
grape boxes, 85, 86, 88
PlantBottle, 198–199
wine bottles, 115, 116–118, 118

pharmaceutical products
over-the-counter (non-prescription) pills, 166–170
packaging legislation, 7, 166
quantity in sales unit (apportionment), 76, 154–158

PIQET© (Packaging Impact Quick Evaluation Tool) software, 56

PlantBottle materials, 198, 198–199
plastics
contact contamination of products, 7
for IKEA loading ledges, 140, 145–146
ocean dumping, 17
for redesigned carton display pallets, 119
secondary packaging, sustainability impacts, 177–179
types used in food packaging, 104, 134, 198–199, 200
use in pill blister packs, 167
wrapping for tertiary packaging, 86, 126, 151, 160

pollution
'polluter pays' (EPR) policies, 8
reduction as pillar of sustainability, 20
see also waste
polymers, bio-based, 104, 198–199
portion sizes, 5, 137
postponement (business strategy), 44
preservation function, 4, 102–103, 103
preservatives, added, 85

primary packaging
arrangement for consumer display, 119
CDM use, to reduce handling and materials, 172, 173, 173
design improvements, 128–129, 167–170
effects of shape on tertiary fill rate, 136–139, 138
importance for perishable goods, 72, 85, 102–103, 150
as part of packaging system, 10–11
returnable, for home delivery, 23
space for information/graphics, 187–190, 189, 190

protection
case studies
citrus fruits, 90–94
flat-pack furniture, 94–99
imported table grapes, 84–90
as function of packaging, 4–5, 23
protection (cont’d)
of public, legislative measures, 7, 168
role related to sustainable
development, 71–72, 83
prototypes, 53, 56

QR (quick response) codes, 78, 191
quality
biosensors for monitoring,
183–187, 184
control checks, 88, 92
perceptions influenced by
packaging, 188
response to customer complaints, 94
user assessment of quality attributes,
54, 55
questionnaires (surveys), 51–52

recycling
collection and recovery rates, 111, 112
considered in design, 38–39
cost benefits, materials compared, 116
ease of packaging disposal, 176, 179
information on packaging, 198,
198–199
loading ledges and wooden pallets, 144
recyclability of materials, 85, 104, 113,
145–146, 177
regulations see legislation
renewable (bio-based) materials, 73, 145
research see academic research
retail
choice of suppliers, 166–167
damaged packages, 72, 96, 123
display, pallet redesign, 120, 120–121,
121, 144
outlets and market structures, 21–23,
38, 187–188
power of chains over producers, 85,
89, 187
product deliveries, 135–136
shelf space fill rate, 74, 130, 189
shelf stacking process efficiency,
159, 172
storage arrangements, 88–89, 160
see also marketing; stores
retort filling process, 105–106
return on investment analysis, 195
return transports, 130, 144, 195
returnable transports, 23, 38, 191–196
RFID (radio frequency identification),
44, 184, 191
risk
definition and impacts, 43
elimination, for loss of returnable
packaging, 193
financial, transfer to producers, 85
pill abuse related to availability,
168, 170
sharing and responsibility in supply
chains, 187
roll containers
design and logistics for dairy
products, 191–193, 192
tracking system implementation,
193–196, 194, 196
salmon packaging, apportionment,
149–154, 151, 152, 153
SCA Hygiene Products (company),
175, 177
scorecard, packaging (Olsmats and
Dominic), 54, 167–168
separable dairy packaging, 200–201, 201
shelf life
extended by processing/filling
technologies, 105–107
of perishable goods, 76, 84, 86, 90,
182–183
prolonged by packaging, 72,
102–103, 103
shelf-ready packaging, 154–158, 155
shipping (sea transport), 87–88, 92, 143
shops see stores
shrink wrapping, 9, 115, 126, 137, 158
‘silent salesman’ role, 22, 79, 187,
196–202
simulations, of consumer voice, 53
skin conductivity switches, 172, 172
social equity, 20
software programs, design, 56–57
South Africa
citrus fruit production for export,
90–92
table grape producers, 85, 89
wine industry, carbon emissions reduction, 115, 116, 117
wine packaging and supply chain, 158–159
stackability
comparison of containers, 110
double-stacking, pack redesign, 155–156, 156, 157
features improving stackability, 85, 97, 98, 134, 168
related to stability and fill rate, 74
storage conditions, 88–89, 92, 176, 183–184
stores (shops)
deregulation of pharmaceuticals, impacts, 166, 168
display and pickup arrangements, 97–98, 98
self-service customers, 196–197
small corner vs. specialist outlets, 187–188
supermarkets, history and impacts, 21–22
supply chains
drinks products, 115–116, 122, 159, 160
end user handling efforts, 176
environmental impact assessments, 24–25, 27
food products, 30, 31, 86–89, 87, 91–94
information and tracking technologies, 78, 183–187
management, interdisciplinary integration, 12–14, 29
market deregulation impacts, 166–167
needs of actors considered during design, 37, 43–44, 152–153
packaging impacts on sustainability, 89, 90, 94
working procedures for damage limitation, 95–96
surveys, consumer (questionnaires), 51–52, 176–177
sustainable development
contributions of packaging, 24, 27–31, 41, 205
evaluation of designs, 47, 57–58
goals and global attention, 17–19, 19
guidance compass, 57–58, 64–71, 66
triple bottom line (three pillars), 19–21, 20, 69
Sustainable Packaging Coalition (SPC), 55–56
system concept of packaging, 10–11, 11, 25–26
design and performance, 36–37, 54
systemic combining, 70, 81
tamper-evident technologies, 6, 134
team management, 47–48, 50, 68
technical specifications, 46
temperature control, 86–87, 88–89, 92, 134, 137
see also indicators
Tempix temperature indicator, 185
Tetra Recart retortable cartons
design and materials, 108–109, 109
environmental impacts, 111–113, 114
shape and weight compared with cans, 110, 110–111, 111
theft prevention, 171–172, 173, 192, 193–196
Toothpaste
ACTA brand packaging and supply, 154–155, 155
reapportionment of secondary packaging, 155–158, 156, 157
TORK hand towels
ease of use and redesign, 176–179, 177, 178
packaging and supply chain, 175, 175–176, 176
tracking identification systems, 193–196, 194, 196
trade-offs
in decision-making, 42–43, 48, 98
package solution compromises, 139, 153, 161, 171
trademarks, 7–8
transport
 conditions for perishable goods, 86–88, 92
environmental impacts, 17, 31, 115, 117
fleet size reduction, 195
role of packaging in damage protection, 72
space utilization, 110–113, 130, 136–137, 142–143, 143
supply chain logistics, 127–128, 175–176, 176
tracking information importance, 78–79, 192–196, 196

UN sustainable development goals, 18–19, 19
Unilever, 127, 132
unit loads, support structures, 140–141, 141
unitization function, 5, 97
US (United States)
 environmental responsibilities, 8
 mass production and marketing history, 21
‘use by’ dates, 182–183
user-friendliness
case studies
 Alvedon® (paracetamol) pills, 166–170
 controlled delamination materials (CDM), 171–174
 separable package for yoghurt, 200–201, 201
 TORK hand towels, 174–179
design considerations, 76–77, 109, 113, 165
handles for heavy goods, 97, 159
users
 identification of needs, 46
 insight mining, 50–52, 51
 participation in design, 52
 of sustainable packaging design compass, 66–68
 value of package information, 78–79
see also consumers
vacuum-packed products, 151, 151
value addition
 components considered in design, 28, 42–43
 creation as business model, 44
 quality information technology, 184–186
Walmart’s sustainable packaging scorecard, 26–27
warehouses, location space fill rate, 74, 137, 143, 157
waste
 avoidance by protective packaging, 71–72
 caused by container emptying problems, 200–201
date-labelling as cause, 182–183
economic responsibility for, 89, 93, 185–187
impact of apportionment, 149–154, 153
over/under-packaging balance, 23, 24
public perceptions of packaging, 25–26, 63, 105
reduction, reuse and recycling aims (‘3 Rs’), 17, 26–27, 77
wholesalers
 competition, 166–167
 product handling time, 119–120, 120, 159
quality control checks, 88
role in supply chains, 87, 91, 151, 155
wine
 number of bottles per box, 158, 159, 161–162
primary packaging (bottle) materials, 114–118, 118, 158
wood, packaging material regulations, 140–141
World Commission on Environment and Development (1987), 18
World Economic Forum, 29