Contents

List of Contributors
xiii

1. **Martin Fleischmann – The Scientist and the Person**

 Alan M. Bond, Elena A. Mashkina and Alexandr N. Simonov

 2.1 DC Cyclic Voltammetry

 2.1.1 Principles
 23

 2.1.2 Processing DC Cyclic Voltammetric Data
 26

 2.1.3 Semiintegration
 29

 2.2 AC Voltammetry

 2.2.1 Advanced Methods of Theory–Experiment Comparison
 35

 2.3 Experimental Studies

 2.3.1 Reduction of [Ru(NH$_3$)$_6$]$_3^+$ in an Aqueous Medium
 36

 2.3.2 Oxidation of FeII(C$_5$H$_5$)$_2$ in an Aprotic Solvent
 40

 2.3.3 Reduction of [Fe(CN)$_6$]$_3^-$ in an Aqueous Electrolyte
 42

 2.4 Conclusions and Outlook
 43

 References
 45

3. **Electrocrystallization: Modeling and Its Application**
 Morteza Y. Abyaneh

 3.1 Modeling Electrocrystallization Processes
 53

 3.2 Applications of Models

 3.2.1 The Deposition of Lead Dioxide
 58

 3.2.2 The Electrocrystallization of Cobalt
 60

 3.3 Summary and Conclusions
 61

 References
 63

4. **Nucleation and Growth of New Phases on Electrode Surfaces**
 Benjamin R. Scharifker and Jorge Mostany

 4.1 An Overview of Martin Fleischmann’s Contributions to Electrochemical Nucleation Studies
 66

 4.2 Electrochemical Nucleation with Diffusion-Controlled Growth
 67

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Mathematical Modeling of Nucleation and Growth Processes</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>The Nature of Active Sites</td>
<td>69</td>
</tr>
<tr>
<td>4.5</td>
<td>Induction Times and the Onset of Electrochemical Phase Formation Processes</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>Organic Electrosynthesis</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Derek Pletcher</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Indirect Electrolysis</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Intermediates for Families of Reactions</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>Selective Fluorination</td>
<td>84</td>
</tr>
<tr>
<td>5.4</td>
<td>Two-Phase Electrolysis</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>Electrode Materials</td>
<td>87</td>
</tr>
<tr>
<td>5.6</td>
<td>Towards Pharmaceutical Products</td>
<td>88</td>
</tr>
<tr>
<td>5.7</td>
<td>Future Prospects</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>91</td>
</tr>
<tr>
<td>6</td>
<td>Electrochemical Engineering and Cell Design</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Frank C. Walsh and Derek Pletcher</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Principles of Electrochemical Reactor Design</td>
<td>96</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Cell Potential</td>
<td>96</td>
</tr>
<tr>
<td>6.1.2</td>
<td>The Rate of Chemical Change</td>
<td>97</td>
</tr>
<tr>
<td>6.2</td>
<td>Decisions During the Process of Cell Design</td>
<td>98</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Strategic Decisions</td>
<td>98</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Divided and Undivided Cells</td>
<td>98</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Monopolar and Bipolar Electrical Connections to Electrodes</td>
<td>99</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Scaling the Cell Current</td>
<td>100</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Porous 3D Electrode Structures</td>
<td>100</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Interelectrode Gap</td>
<td>101</td>
</tr>
<tr>
<td>6.3</td>
<td>The Influence of Electrochemical Engineering on the Chlor-Alkali Industry</td>
<td>102</td>
</tr>
<tr>
<td>6.4</td>
<td>Parallel Plate Cells</td>
<td>105</td>
</tr>
<tr>
<td>6.5</td>
<td>Redox Flow Batteries</td>
<td>106</td>
</tr>
<tr>
<td>6.6</td>
<td>Rotating Cylinder Electrode Cells</td>
<td>107</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusions</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>109</td>
</tr>
<tr>
<td>7</td>
<td>Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Early History, Principles, Methods, and Experiments</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Zhong-Qun Tian and Xue-Min Zhang</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Early History of Electrochemical Surface-Enhanced Raman Spectroscopy</td>
<td>116</td>
</tr>
</tbody>
</table>
7.2 Principles and Methods of SERS
7.2.1 Electromagnetic Enhancement of SERS 118
7.2.2 Key Factors Influencing SERS 119
7.2.3 “Borrowing SERS Activity” Methods 121
7.2.4 Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy 123
7.3 Features of EC-SERS 124
7.3.1 Electrochemical Double Layer of EC-SERS Systems 124
7.3.2 Electrolyte Solutions and Solvent Dependency 125
7.4 EC-SERS Experiments 125
7.4.1 Measurement Procedures for EC-SERS 125
7.4.2 Experimental Set-Up for EC-SERS 127
7.4.3 Preparation of SERS Substrates 128
Acknowledgments 131
References 131

8 Applications of Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS)
Marco Mustiani, Jun-Yang Liu and Zhong-Qun Tian
8.1 Pyridine Adsorption on Different Metal Surfaces 138
8.2 Interfacial Water on Different Metals 141
8.3 Coadsorption of Thiourea with Inorganic Anions 143
8.4 Electroplating Additives 146
8.5 Inhibition of Copper Corrosion 147
8.6 Extension of SERS to the Corrosion of Fe and Its Alloys: Passivity 149
8.6.1 Fe-on-Ag 150
8.6.2 Ag-on-Fe 150
8.7 SERS of Corrosion Inhibitors on Bare Transition Metal Electrodes 150
8.8 Lithium Batteries 152
8.9 Intermediates of Electrocatalysis 154
Acknowledgments 156
References 156

9 In-Situ Scanning Probe Microscopies: Imaging and Beyond
Bing-Wei Mao
9.1 Principle of In-Situ STM and In-Situ AFM 164
9.1.1 Principle of In-Situ STM 164
9.1.2 Principle of In-Situ AFM 166
9.2 In-Situ STM Characterization of Surface Electrochemical Processes 167
9.2.1 In-Situ STM Study of Electrode–Aqueous Solution Interfaces 167
9.2.2 In-Situ STM Study of Electrode–Ionic Liquid Interface 167
9.3 In-Situ AFM Probing of Electric Double Layer 170
9.4 Electrochemical STM Break-Junction for Surface Nanostructuring and Nanoelectronics and Molecular Electronics 173
9.5 Outlook 176
References 177
10 In-Situ Infrared Spectroelectrochemical Studies of the Hydrogen Evolution Reaction
Richard J. Nichols

10.1 The H⁺/H₂ Couple 183
10.2 Single-Crystal Surfaces 184
10.3 Subtractively Normalized Interfacial Fourier Transform Infrared Spectroscopy 186
10.4 Surface-Enhanced Raman Spectroscopy 189
10.5 Surface-Enhanced IR Absorption Spectroscopy 190
10.6 In-Situ Sum Frequency Generation Spectroscopy 193
10.7 Spectroscopy at Single-Crystal Surfaces 194
10.8 Overall Conclusions 197
References 198

11 Electrochemical Noise: A Powerful General Tool
Claude Gabrielli and David E. Williams

11.1 Instrumentation 202
11.2 Applications 204
11.2.1 Elementary Phenomena 204
11.2.2 Bioelectrochemistry 205
11.2.3 Electrocrystallization 207
11.2.4 Corrosion 209
11.2.5 Other Systems 215
11.3 Conclusions 217
References 217

12 From Microelectrodes to Scanning Electrochemical Microscopy
Salvatore Daniele and Guy Denuault

12.1 The Contribution of Microelectrodes to Electroanalytical Chemistry 224
12.1.1 Advantages of Microelectrodes in Electroanalysis 224
12.1.2 Microelectrodes and Electrode Materials 226
12.1.3 New Applications of Microelectrodes in Electroanalysis 227
12.2 Scanning Electrochemical Microscopy (SECM) 230
12.2.1 A Brief History of SECM 230
12.2.2 SECM with Other Techniques 231
12.2.3 Tip Geometries and the Need for Numerical Modeling 233
12.2.4 Applications of SECM 234
12.3 Conclusions 235
References 235

13 Cold Fusion After A Quarter-Century: The Pd/D System
Melvin H. Miles and Michael C.H. McKubre

13.1 The Reproducibility Issue 247
13.2 Palladium–Deuterium Loading 247
13.3 Electrochemical Calorimetry 249
13.4 Isoperibolic Calorimetric Equations and Modeling 250
13.5 Calorimetric Approximations 251
13.6 Numerical Integration of Calorimetric Data 252
13.7 Examples of Fleischmann’s Calorimetric Applications 254
13.8 Reported Reaction Products for the Pd/D System 256
 13.8.1 Helium-4 256
 13.8.2 Tritium 256
 13.8.3 Neutrons, X-Rays, and Transmutations 257
13.9 Present Status of Cold Fusion 257
Acknowledgments 258
References 258

14 In-Situ X-Ray Diffraction of Electrode Surface Structure 261
Andrea E. Russell, Stephen W.T. Price and Stephen J. Thompson
14.1 Early Work 262
14.2 Synchrotron-Based In-Situ XRD 264
14.3 Studies Inspired by Martin Fleischmann’s Work 266
 14.3.1 Structure of Water at the Interface 266
 14.3.2 Adsorption of Ions 268
 14.3.3 Oxide/Hydroxide Formation 268
 14.3.4 Underpotential Deposition (upd) of Monolayers 270
 14.3.5 Reconstructions of Single-Crystal Surfaces 275
 14.3.6 High-Surface-Area Electrode Structures 275
14.4 Conclusions 277
References 277

15 Tribocorrosion 281
Robert J.K. Wood
15.1 Introduction and Definitions 281
 15.1.1 Tribocorrosion 282
 15.1.2 Erosion 282
15.2 Particle–Surface Interactions 283
15.3 Depassivation and Repassivation Kinetics 283
 15.3.1 Depassivation 284
 15.3.2 Repassivation Rate 286
15.4 Models and Mapping 287
15.5 Electrochemical Monitoring of Erosion–Corrosion 290
15.6 Tribocorrosion within the Body: Metal-on-Metal Hip Joints 291
15.7 Conclusions 293
Acknowledgments 293
References 293
16 Hard Science at Soft Interfaces

Hubert H. Girault

16.1 Charge Transfer Reactions at Soft Interfaces
16.1.1 Ion Transfer Reactions
16.1.2 Assisted Ion Transfer Reactions
16.1.3 Electron Transfer Reactions
16.2 Electrocatalysis at Soft Interfaces
16.2.1 Oxygen Reduction Reaction (ORR)
16.2.2 Hydrogen Evolution Reaction (HER)
16.3 Micro- and Nano-Soft Interfaces
16.4 Plasmonics at Soft Interfaces
16.5 Conclusions and Future Developments

References

17 Electrochemistry in Unusual Fluids

Philip N. Bartlett

17.1 Electrochemistry in Plasmas
17.2 Electrochemistry in Supercritical Fluids
17.2.1 Applications of SCF Electrochemistry
17.3 Conclusions

Acknowledgments

References

18 Aspects of Light-Driven Water Splitting

Laurence Peter

18.1 A Very Brief History of Semiconductor Electrochemistry
18.2 Thermodynamic and Kinetic Criteria for Light-Driven Water Splitting
18.3 Kinetics of Minority Carrier Reactions at Semiconductor Electrodes
18.4 The Importance of Electron–Hole Recombination
18.5 Fermi Level Splitting in the Semiconductor–Electrolyte Junction
18.6 A Simple Model for Light-Driven Water-Splitting Reaction
18.7 Evidence for Slow Electron Transfer During Light-Driven Water Splitting
18.8 Conclusions

Acknowledgments

References

19 Electrochemical Impedance Spectroscopy

Samin Sharifi-Asl and Digby D. Macdonald

19.1 Theory
19.2 The Point Defect Model
19.2.1 Calculation of Y_F
19.2.2 Calculation of $\frac{\Delta C^o}{\Delta U}$ 355
19.2.3 Calculation of $\frac{\Delta C^z}{\Delta U}$ 356
19.3 The Passivation of Copper in Sulfide-Containing Brine 357
19.4 Summary and Conclusions 363
Acknowledgments 363
References 363

Index 367