SUBJECT INDEX

Page references followed by *fig* indicate an illustrated figure; followed by *t* indicate a table.

A

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Search Premier (EBSCO)</td>
<td>53, 56, 58t, 59</td>
</tr>
<tr>
<td>Advocacy Coalition Framework (ACF)</td>
<td>12</td>
</tr>
<tr>
<td>African Americans: culture of poverty and</td>
<td>405–406; poverty rates of, 404; spatial concentrations of poverty and, 404–405</td>
</tr>
<tr>
<td>Alliance for School Choice</td>
<td>311, 323</td>
</tr>
<tr>
<td>American Federation of Teachers</td>
<td>323</td>
</tr>
<tr>
<td>American Journal of Political Science</td>
<td>55</td>
</tr>
<tr>
<td>American Political Science Association</td>
<td>14</td>
</tr>
<tr>
<td>American Political Science Review</td>
<td>23</td>
</tr>
<tr>
<td>ANOVA</td>
<td>79</td>
</tr>
<tr>
<td>ARIMA</td>
<td>80</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated Press</td>
<td>312, 317, 318</td>
</tr>
<tr>
<td>Average effect sizes: assessing the significance of</td>
<td>128–129; calculated using stata, 129–131; considerations for calculating, 127; definition of, 18–19; using fixed and random effects, 128</td>
</tr>
<tr>
<td>Begg test</td>
<td>252, 425</td>
</tr>
<tr>
<td>Behavioral life outcomes</td>
<td>See Economic and behavioral life outcomes</td>
</tr>
<tr>
<td>Benson, Jackson v.</td>
<td>316</td>
</tr>
<tr>
<td>Birge ratio (R_b)</td>
<td>162</td>
</tr>
<tr>
<td>BLDSC</td>
<td>56, 58t</td>
</tr>
<tr>
<td>British Library Document Supply Center</td>
<td>61</td>
</tr>
<tr>
<td>Brookings Institution</td>
<td>56, 403</td>
</tr>
<tr>
<td>Bush v. Holmes</td>
<td>318</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell Collaboration</td>
<td>7, 8–9</td>
</tr>
<tr>
<td>Center on Education Policy</td>
<td>314, 317, 318</td>
</tr>
<tr>
<td>Charter schools</td>
<td>313</td>
</tr>
<tr>
<td>Child support enforcement performance management</td>
<td>389t</td>
</tr>
<tr>
<td>Cleveland Scholarship and Tutoring Program</td>
<td>316–317, 320–321</td>
</tr>
<tr>
<td>Cluster robust standard errors</td>
<td>199–200</td>
</tr>
<tr>
<td>Cochrane Collaboration: increased use of meta-analysis in health and education policy promoted by</td>
<td>16; on meta-analyses synthesizing studies not reports, 69; meta-analysis best practices information in</td>
</tr>
</tbody>
</table>
Cochrane Collaboration (continued)
51; origins and description of, 7, 8

Cochrane Handbook of Systematic Reviews of Interventions (Higgins and Green): best practice guidelines for literature review in, 28, 51, 65–66; on best practice of recording data onto paper coding forms, 95; on description of coding effect sizes, 70; on meta-analysis used for studies rather than reports, 69

Cochrane Reviews, 8
Code books, 86
Code sheets, 86
Coded data: “low inference,” 94; managing, 94–97
Coders: assessing the performance of, 93–94; qualifications of, 89–91; training, 92–93
Coding: decided what data in include, 70–85; description of, 21; elements of research design and study quality, 78–80; information for effect sizes and effect size variances, 74–76; issues to consider for, 68–70; “low inference” codes, 94; with missing data, 83–84; moderator variables from multivariate models, 81–82; process of, 85–97; scientifically interesting moderator variables, 76–78. See also Data
Coding forms: using paper vs. computerized, 95t; sample, 98–101e
Coding instructions: code books and code sheets, 86; iterative process to develop, 88–89; preserving a hierarchical data structure, 87; unique identifiers in, 86–87
Coding process: developing instruments, 86–89; managing coded data, 94–97; selecting and training coders, 89–94
Cohen’s kappa, 64–65
Cohrane Reviews, 8
Collinearity: performance of the FAT as N, measurement error, and, 278–281; REMR (random effects meta-regression), 187–188; size of FAT, varying, 282t
Colorado Congress of Parents, Owens v., 318
Combining effect sizes: calculating average effect sizes, 127–131; describing effects sizes, 131–137; issues to consider for, 124; weight effect sizes, 125–127
Complier Average Causal Effect (CACE), 91
Comprehensive Meta-Analysis (CMA), 163
Compstat program (NYC): description of and crime reduction goal of, 356–357; “hard” empirical literature on, 364–365; meta-regression results on, 386; stratified meta-regression of, 394–397
Concept-indicator problems: description of, 44; meta-analysis as requiring an adequate appreciation of, 44–45
Conceptual hypotheses: conceptual definitions developed for, 43–46; description of, 43
Conceptualizing a meta-analysis: accounting for variation in effect sizes, 46–50; hypotheses, 42–46; identifying quantity of interest/conceptual model for, 40–50; research questions, 41–42
Conference of the National Association of Schools of Public Affairs and Administration (NASPAA) [2010], 16
Conference reports, 61
Correlation coefficient r, 105–109
CRVE standard errors: hypothesis tests in REMR using WCB and, 205t; limitations of, 199–200; restricted manual WLS REMR in Stata with, 205t fg “Culture of poverty,” 405–406 Cumulative meta-analysis: conducting a, 134–137; description of, 131

D
D-based effect sizes: corrected standardized mean difference: Hedges’s g,
113–114, 117; formulas for, 116; overview of, 110–111; standardized mean difference, 111–113

Data: coding with missing, 83–84; effect-level information, 72–74; search-level information, 70–71; study-level information, 71–72. See also Coding

Data structure: cross-sectional, 80; pooled cross sections, 80; time series, 80; true panel, 80

“Delta-splitting” method, 209

Dependence: choosing between GEE and CRVE in meta-regression to address, 225–226; choosing between HLM and CRVE in meta-regression to address, 214–217; delta-splitting approach for addressing, 227–229; GEE (generalized estimating equations) to address meta-regression, 218–226; HLM (hierarchical linear models) for addressing meta-regression, 208–213

Dependent variables: effect sized employed as, 20; meta-regression design using, 144–145

Difference of means, 79

Division of Program Evaluation and Methodology (GAO), 15

“Double coding,” 94

E

EBSCO (Academic Search Premier), 53, 56, 58, 59

EconLit, 61

Economic and behavioral life outcomes: cultural theories of poverty on, 405–406; human capital approaches to poverty and, 406; poverty deconcentration policies study of impact on, 408–438; social capital theory on poverty and, 406–407

Economics research:
- FAT-MST-PET-MRA meta-analysis applied to, 268–308; poverty deconcentration policies study, 408–438; publication bias found in, 268–269
- The Economist’s Voice, 56

Education performance management, 389

Educational voucher data analysis: average effect sizes for effects of vouchers, 335–337; publication bias, 337–339; study-level cumulative meta-analysis of effects on student achievement, 336–339

Educational voucher effects: accounting for variability in, 326–331; choosing a measure of academic achievement to assess, 324; defining, 319; designing a meta-analysis of, 324–331; estimating Complier Average Causal Effect (CACE), 326; estimating intent to treat (ITT), 325–326, 331; estimating treatment on the treated (TT), 325–326, 331; reviewing specific programs and, 319–324; studies coded for meta-analysis of, 349–351

Educational voucher meta-regression analysis: accounting for variation in effect sizes, 339–342; average effects of vouchers in the baseline scenario, 343; characteristics and quality of original studies, 341–342; characteristics of outcome measures, 339–341; characteristics of the baseline scenario, 342; effects of outcome measures on effect sizes, 343–345; effects of student characteristics on effect sizes, 345–346; effects of study design and quality on effect sizes, 346–347; effects of voucher program design on effect sizes, 346; estimated effect sizes under various scenarios, 347–348; estimating the meta-regression models, 342–348; random effects results using CRVE and GEE, 344–345

Educational voucher programs: alternatives to, 313; a brief history of U.S., 316–318; Cleveland Scholarship and Tutoring Program,
Educational voucher programs (continued)
316–317, 320–321; considering the debate over, 311–312; description of, 313; Florida Opportunity Scholarship Program, 317–318; Indiana’s, 317; linking vouchers to student achievement, 313–315; list of search engines, organizations, and sites searched for studies on, 332; listed by state (2011), 314; Milwaukee Parental Choice Program, 316, 319–320; as one element of school choice, 312–316; searching the literature on, 331–334; Washington, DC Opportunity Scholarship Program, 317, 321. See also School choice

Effect size variances: coding information for, 74–76; estimating random effects variance component, 124; explaining differences across original studies, 22; formulas for r-based and d-based, 116; in public management and policy effect sizes from other fields, 482–483; questioning what accounts for, 141–142

Effect sizes: assessing heterogeneity of, 121–124; average, 18–19; calculating, 103–118; coding information for, 74–76; combining, 124–137; comparing public management and policy from other fields, 482–483; data coding considerations of, 21; definitions of, 18, 69; differences in the goals of, 34; fixed, 118–120; meta-analysis adapted for public management and policy, 33–34; meta-analysis stage of calculating and combining, 22; meta-regression models explaining variation in, 20; moderator variables influencing magnitude of, 19; publication bias consequences for estimates of, 236–238; quality of interest represented by, 46–50; random, 120–121; represented by quantities of interest, 46–47; statistical technique used to generate, 79–80; types, heterogeneity, number of, 33–34. See also Quality of interest; specific studies

Effect sizes calculations: average effect sizes, 127–131; d-based effect sizes, 110–114, 116; formulas for converting between effect sizes in meta-analysis, 117; issues to consider for, 103–105; odds-based effect sizes, 114–116; outcomes a hypothetical experiment with binary treatment and outcomes, 115; r-based effect sizes, 105–110, 116; summarizing, 116–118

Egger test: alternative tests for publication bias other than, 250–251; criticisms for publication bias, 245–250; critiques of applying it to the FAT, 273–274; for funnel plot asymmetry, 245; Stata metabias command to conduct, 252

Endogeneity, REMR (random effects meta-regression), 188–189

Endogenous variable, REMR (random effects meta-regression), 188

Environment tobacco smoke (ETS) report [EPA], 16

ERIC, 58

Ethnic differences. See Racial/ethnic differences

Evidence-Based Child Health, 8

Ex post endogeneity controls: differencing, 80; fixed effects, 80; instrumental variables, 80; matching, 80; regression discontinuity, 80

F

Fail-safe N: description of the, 253; Gleser and Olkin’s application of, 255–256; Orwin’s attempt to improve utility of, 255; remedying publication bias using, 253–255

FAT-MST-PET-MRA: assessing the, 272–291; critiques of
the Egger test applied to, 273–274; estimating the magnitude of “true” effects using the PET, 292–307; identifying “true” effects using the MST, 291–292; increasing the quality of meta-analysis using, 9; meta-regression, 269–272

FAT-MST-PET-MRA assessments: baseline simulations estimating size of the FAT, 279t; estimating the magnitude of the “true” effect using PET, 272; of FAT as test for publication bias, 272–291; of performance of the augmented FAT, 288–291; of the performance of the FAT, 274–275; performance of the FAT as N, measurement error, and collinearity vary, 278–281; performance of the FAT under effect size heterogeneity, 281–283; performance of the FAT under ideal conditions, 278; of performance of the MST under conditions of effect size heterogeneity, 292t; of previous assessments of the FAT, 275–277; simulation structure for assessing performance of the FAT, 277–278; size of augmented FAT with effect size heterogeneity, 290t; size of FAT, varying collinearity, 282t; size of FAT, varying sample sizes and measurement error in Y for, 280t–281; as test for publication bias, 270–271; testing for “true” effects using MST, 271–272; why does FAT perform so poorly under effect size heterogeneity?, 283–288

FAT-MST-PET-MRA estimating: the magnitude of the “true” effects using the PET, 292–307; performance of the PET with heterogeneous effect sizes, 299–304; performance of the PET with homogeneous effect sizes, 296–299; performance of the PET with identical measurement of Y and X, 295–304; performance of the PET with varying measurement of Y and X, 304–307

FEML (maximum likelihood estimator): comparing REML to, 174; description of, 174

FEMR (fixed effects meta-regression): advantages of REMR over, 171–172; difference between SUVTA and, 172; estimating the fixed effects model in, 151–154; goodness of fit in, 161–163; hypothesis testing in, 154–157; interpreting results in Stata, 168–170; poverty deconcentration outcomes study random effects vs., 417–422; power analysis in, 160–161; prediction and, 158–159; in Stata, 163–170; WLS (weighted least squares) estimation of, 153–154, 165–168/fg. See also Meta-regression models

FileMaker Pro, 95

Fisher’s Z: calculating, 109–110; fixed effects meta-regression using, 164; formulas for converting between effect sizes, 117/fg; performance management data analysis using, 372–373; PMS-performance studies use of, 455–457; Poverty deconcentration outcomes study use of, 429–430; weighting fixed effects inverse variance weights, 125. See also R-based effect sizes

Fixed effects models; assessing effect size heterogeneity using random or, 121–124; definition of, 18; meta-analysis using approach of, 118–120; meta-regression, 151–170; weighting fixed inverse variance, 125

Florida Opportunity Scholarship Program, 317–318

Focal predictors, 17

Forward citation search, 54

Funnel plots: asymmetric funnel plot of effect size against effect size standard error, 241/fg; description of, 238–239; Egger test for funnel plot asymmetry, 245/fg; identifying publication bias using, 238–243; measuring effects of school vouchers on student testing, 337/fg–338/fg; performance management analysis using, 378/fg; poverty deconcentration outcomes study publication bias, 418,
Funnel plots (continued) 421–422, 425/fg, 426/fg; PSM-performance relationship study, 461–462/fg; of 680 effect sizes coded from environmental justice literature, 252/fg; symmetric contour funnel plot with significance bands, 242/fg; symmetric funnel plot of effect size against effect size standard error, 240/fg; tests for funnel asymmetry, 243–245

G

Galbraith plot. See Radial plot

Gautreaux housing program: list of search engines, organizations, and sites searched for on, 414/fg; literature review on, 409–410; policy origins of the, 399, 400, 401; poverty deconcentration policies study on impact of, 408–438

Gautreaux/poverty deconcentration outcomes study: analysis of data, 416–426/fg; conclusions from the, 436–438; literature search on, 413–416/fg; meta-regression analysis of, 426–426/fg; research frame used for, 412–413

GEE (generalized estimating equations): addressing REMR dependence using, 218–226; choosing between CRVE and, 225–226; to estimate REMR, 207; for generating effect size, 80; performance management meta-regression estimation using, 380;

poverty deconcentration outcomes study use of, 435t–436t; PSM-performance relationship study use of, 463–464, 468; of REMR with exchangeable correlation matrix and empirical variance estimates, 225/fg; of REMR with independent correlation matrix and empirical variance estimates, 224/fg; simple introduction to, 218–222; using Stata for, 222–224. See also Estimation

GLS (generalized least squares): FEMR (fixed effects meta-regression) estimated by, 152; REMR (random effects meta-regression) estimated by, 152

Goodness to fit: FEMR (fixed effects meta-regression), 161–163; REMR (random effects meta-regression), 176–177, 181

Google Scholar, 59; number of “meta-analysis” articles by title by, 6/fg; number of publications (1990–2011) referring to meta-regression using, 143/fg

Government Performance and Results Act (GPRA), 11, 355, 357, 358–359

Government reports sources, 60

GPRA Modernization Act (2010), 16

Grey literature: archives of, 61; conference papers sources, 61; developing search strategy for, 60–61; dissertations and theses sources, 61; government reports sources, 60; preventing publication bias by including, 265–266; reports from public policy research firms or think tanks, 60; working papers, 60–61

H

Harvard University’s Program on Education Policy and Governance (PEPG), 315, 321

Head Start studies, 69

Hedges’s g, 113–114, 117/fg

Heterogeneity: assessing performance of the MST under conditions of effect size, 292t; assessing why FAT performs so poorly under effect size, 283–288; performance of the FAT under effect size, 281–283; size of augmented FAT with effect size, 290t; size of FAT with effect size heterogeneity in original studies, 284t; testing REMR (random effects meta-regression) for residual, 175

Hippocratic Oath—first do no harm, 479

HLM (hierarchical linear models): comparing to OLS regression, 209; to estimate REMR, 207; estimated using restricted maximum likelihood, 209–210; for generating effect size, 80; in meta-regression, 210–213; overview of, 208

Holmes, Bush v., 318

HOPE VI (Housing Opportunities for People Everywhere): list of search engines, organizations, and sites searched for on, 414/fg; literature review on, 411; origins of, 400–401; poverty deconcentration policies study on impact of, 408–438; research
frame of poverty deconcentration outcomes study on, 412–413
HOPE VI/poverty decentralization study: analysis of data, 416–426/fig; conclusions from the, 436–438; literature search on, 413–416/fig; meta-regression analysis of, 426–436; research frame used for, 412–413
Housing Act (1937), 399. See also Public housing
Housing Choice Voucher Program. See Moving to Opportunity (MTO)
HUD (U.S. Department of Housing and Urban Development), 400, 401
Human capital theory on poverty, 406
Hypotheses: conceptual and operational definitions in, 43–46, 45t; meta-analysis, 42–43; operational, 45–46; performance management outcomes measures and key, 366–368. See also Null hypothesis
Hypothesis testing: conducting REMR testing in Metareg, 181–182; fixed effects meta-regression, 154–157; how meta-analysis improves, 11–12; performance management, 367–368; REMR (random effects meta-regression), 175–176
I
I^2 statistic, 162
IBSS, 56, 57t
Independent variables: focal predictor label of, 17; performance management meta-regression analysis, 381–382; poverty deconcentration outcomes study meta-regression analysis, 427–429
Individual parameters testing REMR, 175
Information Retrieval Policy Brief (Rothstein, Turner, and Lavenberg), 51
Institute of Educational Sciences, 9
Intercoder correlation coefficient (ICC), 93–94
International City/County Management Association (ICMA), 355
Inverse variance weight: estimating random effects, 124; fixed and random effects, 125; in practice, 125–127
Jackson v. Benson, 316
Job Training Partnership Act, 365
Job training programs: forest plot of performance management research on, 375t/fig; performance management meta-regression analysis on, 389t; performance management of, 365
Joint hypothesis testing: FEMR (fixed effects meta-regression), 175–176; REMR (random effects meta-regression), 175–176
Journal of Economic Literature (JEL), 23
The Journal of Economic Perspectives, 2
Journal of Economic Surveys, 23
The Journal of Evidence-Based Medicine, 8
Journal of Policy Analysis and Management, 2, 55

K
Keywords: identifying natural language, 52–53; identifying search profile, 52–54

L
Latino/a poverty rates, 404
Least squares regression, 79
Legislation: Government Performance and Results Act (GPRA), 11, 355, 357, 358–359; GPRA Modernization Act (2010), 16; Housing Act (1937), 399; Job Training Partnership Act, 365; No Child Left Behind (NCLB), 362, 377, 380; Worker Investment Act, 365
Lexis-Nexis Academic Universe, 56, 57t, 59
Lipsey, Mark W., 15
Literature reviews: Cochrane Handbook on best practice guidelines for, 28, 51, 65–66; comparing meta-analysis and traditional, 23–24; Gautreaux housing program, 409–410; HOPE VI, 411; Moving to Opportunity (MTO), 410–411; poverty deconcentration outcomes study, 409–411, 413–416; PSM-performance relationship study, 447–450; traditional approach to null hypothesis by, 24
Literature search: bounding the, 54–55; comparing meta-analysis and traditional, 23–24; conducting in meta-analysis, 50–66; on educational voucher programs, 331–334; identifying original studies, 51–61; issues to consider for, 50–51; judging the acceptability of original studies, 51–61; judgment of meta-analysis, 50–66; Cumulative number of articles in JSTOR database since 1980 on, 7; description and uses of, 476–479; in economics, 268–308; of education voucher effects, 324–331; examining the future in public management and policy research of, 475–486; Google Scholar references to titles with, 66; greater certainly and better understanding of knowledge benefits of, 479; higher-quality original studies now available for, 480; increased practitioners' requests for, 481; institutionalization of, 5–9; introduction to, 4–5; maturation of the statistics of, 480; poverty deconcentration outcomes study, 416–426; public management and policy role for, 9–17; questions to ask on public management and policy scholarship use of, 476–478; right time for scientific research to embrace, 3–4; as topic category referenced in SSCI, 5–6; understanding the basics of, 17–31. See also Scientific research

Meta-analysis applications: adaptation for public management and policy, 31–34, 481–484; used to aggregate knowledge of public management and policy, 485; comparing traditional literature search and, 23–24; conceptualizing a, 40–50; conducting a literature search in, 50–66; cumulative number of articles in JSTOR database since 1980 on, 7; description and uses of, 476–479; in economics, 268–308; of education voucher effects, 324–331; examining the future in public management and policy research of, 475–486; Google Scholar references to titles with, 66; greater certainly and better understanding of knowledge benefits of, 479; higher-quality original studies now available for, 480; increased practitioners' requests for, 481; institutionalization of, 5–9; introduction to, 4–5; maturation of the statistics of, 480; poverty deconcentration outcomes study, 416–426; public management and policy role for, 9–17; questions to ask on public management and policy scholarship use of, 476–478; right time for scientific research to embrace, 3–4; as topic category referenced in SSCI, 5–6; understanding the basics of, 17–31. See also Scientific research

Meta-analysis criticisms: garbage in, garbage out, 27–28; selectivity bias, 28; that it cannot be used to combine results from multivariate models, 29–31; that meta-analysis sacrifices nuance and context, 28–29; you can’t compare apples and oranges, 25–27

Meta-Analysis of Economics Research Network (MAER), origins and description of, 7, 9

Meta-analysis stages: stage 1: scoping, 21; stage 2: literature search, 21; stage 3: data coding, 21; stage 4: calculating and combining effect sizes, 22; stage 5: explaining differences in effect sizes across original studies, 22; stage 6: identifying areas for future research, 22–23

Meta-analysis vocabulary/language: average effect size, 18–19; effect size, 18; fixed and random effects models, 19; focal predictor, 17; meta-regression, 20;
moderator variables, 19; original studies, 17

Meta Regression Analysis (MRA):
description of, 197; performance management, 379–390, 394–397; poverty deconcentration outcomes study, 426–436

Meta-regression design:
complications in, 147–151; dependent variables used in, 144–145; effect size heterogeneity in, 148–149; mediating variables in, 144, 147; moderator variables used in, 20, 144, 145–147; non-independence observations in, 149–151

Meta-regression models:
alternatives for addressing dependence in, 207–229; Birge ratio (R_B), 162; choosing between HLM and CRVE in, 214–217; clustered robust estimation in, 193–207; definition of, 20; designing, 144–151; educational voucher evaluation, 339–348; estimating the fixed effects model, 151–154; for explaining differences in effect studies across original studies, 22; FAT-MST-PET-MRA approach to, 269–272; goodness of fit, 161–163; historical development of, 142–144; hypothesis testing, 154–157; I^2 statistic, 162; issues to consider in, 191–193; multi-level clustering in, 206–207; number of publications referring (1990A2011) to, 143/fg; performance management, 379–390, 394–397; power analysis in meta-regression, 160–161; prediction and meta-regression in, 158–159; pseudo-R^2, 163; public management and policy application of, 191–229. See also FEMR (fixed effects meta-regression); REMR (random effects meta-regression)

Metacum command, 134–136

Metan command, 131–134

Metareg command: conducting REMR hypothesis testing in, 181–182; interpreting REMR results in, 178/fg–179/fg; REMR using MOM (method of moments), 184–187/fg; unable to estimate CRVE random effects meta-regression model, 197. See also Stata software

MetaWin, 163

Method assignment to treatment group: multiple methods, 80; nonrandom, other, 80; nonrandom, post hoc matching, 80; nonrandom, self-selection, 80; random assignment after matching, 80; simple random assignment, 80

Micronumerosity, 187–188

Microsoft Access, 95

Microsoft Excel, 96

Midwest Political Science Association (MPSA), 61

Milwaukee Parental Choice Program, 316, 319–320

Milwaukee school voucher program studies, 69

Moderator variables: coding from multivariate models, 81–82; coding scientifically interesting, 76–78; definition of, 19; as explanations for effect size variance, 47–48; using in meta-analysis, 48–50; meta-analysis used to identify important, 46; meta-regression models using, 20, 144, 145–147. See also Variables

MOM (method of moments) estimator: REML (restricted maximum likelihood), 173–174; REMR (random effects meta-regression) using Metareg, 184–187/fg

Moving to Opportunity (MTO): list of search engines, organizations, and sites searched for on, 414/fg; literature review on, 410–411; origins of, 399, 400; poverty deconcentration policies study on impact of, 408–438

Moving to Opportunity/poverty deconcentration outcomes study: analysis of data, 416–426/fg; conclusions from the, 436–438; literature search on, 413–416/fg; meta-regression analysis of, 426–436/fg; research frame used for, 412–413

MRA. See FAT-MST-PET-MRA

MST. See FAT-MST-PET-MRA

Multi-level clustering.

206–207

Multivariate models: coding moderator variables from, 81–82; meta-analysis unable to be used to combine results from, 29–31

MySQL, 95

N

NAEP, 314

National Academy of Sciences, 15
Subject Index

National Association of Schools of Public Affairs and Administration (NASPAA), 16, 61
National Bureau of Economic Research (NBER), 61, 63
National Center for Environmental Economics (NCEE), 61
National Institute of Food and Agriculture, 16–17
National Performance Review (NPR), 355
National Research Council (NRC), 15
NCJRS, 58
NCSPE, 314
New York City voucher program, 322–323
New York Police Department’s Compstat: description of and crime reduction goal of, 356–357; “hard” empirical literature on, 364–365; meta-regression results on, 386; stratified meta-regression of, 394–397
No Child Left Behind (NCLB), 362, 377, 380
Null hypothesis: average effect size to test, 19; average effect sizes for impact of educational vouchers, 335–339; code sheet for information on, 75–76; Compstat-like programs tendency to reject under certain conditions, 397; Egger test over rejection of, 246, 248; estimating sample correlation coefficient \(R \) using \(t \) testing, 105–106, 107; estimating true effects using PET, 293–307; fail-size \(N \) to reverse rejection of, 253–254; FAT-MST-PET-MRA approach to meta-regression, 270–289; FEMR used to test

O

Observations: common data sets and dependence across, 149–150; common research teams and dependence across, 150; meta-regression design and non-independence, 149–151; multiple effect sizes per study and dependence across, 150–151; multiple treatment studies and dependence across, 149

ODBC facility, 96
Odds-based effect sizes, 114–116
Odds ratio (\(OR \)), 115
Office of Management and Budget (OMB), 357, 362
OLS (ordinary least squares) regression: fixed effects meta-regression model in Stata, 165/fig; traditional, 152; WCB and GEE used to address violations of assumptions of, 463
Open enrollment systems, 313
Operational definitions (indicators): description and applications of, 43–46; examples of, 45
Operational hypotheses: description of, 43–44; operational definitions (indicators) developed for, 43–46
Original studies: adapting meta-analysis for public management and policy, 31–32; definition of, 17; explaining differences in effect sizes across, 22; higher-quality of currently available, 480–481; identifying, 51–61; judging the acceptability of, 61–66; moderator variables influencing magnitude of effect sizes calculated from, 19. See also Hypotheses

P

PAIS, 56, 58
Papers First and Proceedings First, 61
Pay-for-Performance, 353
Percentage agreement, 64–65
Performance Assessment and Ratings Tool (PART), 355
Performance Budgeting, 353
Performance management data analysis: on effect sizes, 372–373; forest plots, 374–376/fig; test for random effects, 373–374; test for zero mean effect size, 377; tests for publication bias, 377–379

Owens v. Colorado Congress of Parents, 318
The Oxford Guide to Library Research (Mann), 51

Performance management literature search: flowchart of process and intercoder reliability, 371 fig; intercoder reliability assessments, 372; list of search engines, organizations, and sites for, 369; methods used for, 368, 370–371

Performance management meta-regression: estimation techniques, 379–381; independent variables, 381–382; results of, 382–390

Perspectives on Politics, 2, 23

PET. See FAT-MST-PET-MRA

Policing and public safety: forest plot of performance management research on, 375 fig; New York Police Department’s Compstat on, 356–357, 364–365; performance management meta-regression analysis on, 389

Political Research Quarterly, 23

Poverty: “code of the street” behavioral response to, 406; concerns over public housing concentration of, 398–399; “culture of poverty” concept of, 405–406; human capital approaches to, 406; racial/ethnic rate comparisons, 404; social capital theory approach to, 406–407; spatial concentrations in American cities of, 404–405

Poverty deconcentration outcomes study: analysis of data, 416–426 fig; conclusions of the, 436–438; CRVE (clustered robust variance estimator) used in, 435t–436t; forest plots of the, 418, 419 fig–420 fig, 423–425 fig; funnel plot of the, 418, 421–422, 423 fig, 426 fig; GEE (generalized estimating equations) used in, 435t–436t; impact of programs on negative behaviors, 433 fig; literature review, 409–411, 413–416; meta-regression analysis of data, 426–436 fig; publication bias in, 418, 421–422, 423 fig; research frame used in, 412–413; research questions asked in, 408–409

Poverty deconcentration policies: Gautreaux social experiment under, 399, 400, 401; history of U.S. programs under, 399–402; HOPE VI (Housing Opportunities for People Everywhere) under, 400–401; list of search engines, organizations, and sites searched for on, 414; moving from public housing projects to mixed-income communities, 398–399; Moving to Opportunity (MTO) [Housing Choice Voucher Program or Section 8] under, 399, 400, 408–409; theoretical foundations of, 402–408.

See also Public housing

Power analysis: FEMR (fixed effects meta-regression), 160–161; REMR (random effects meta-regression), 176

Prediction: FEMR (fixed effects meta-regression), 158–159; REMR (random effects meta-regression), 176

Probit for generating effect size, 79

Problem identification process, 9–10

Professional self-image: meta-analysis role in improving, 13–15; of social science contribution to policy-making, 12–13
Program Assessments and Rating Tool (PART), 355, 357–359

Program effects, 408

Program evaluation improvement, 11

Program on Education Policy and Governance (PEPG) [Harvard University], 315, 321

ProQuest, 56, 57

Pseudo-R^2, meta-regression, 163

PSM-performance relationship study: areas for future research, 471; data analysis of the, 455–462/fg; descriptive analysis in the, 457–462/fg; effect sizes in the, 455–457; estimation techniques used in, 462–464; examining the importance of possible, 443–444; findings and significance of, 468–471; flow diagram of the, 454/fg; framing the meta-analysis of the, 447–455; intercoder reliability assessments of the, 453–455; limitations of the meta-analysis of the, 472; literature review on the, 447–450; literature search on the, 450–453; meta-regression analysis of the, 462–468; meta-regression results summary, 466t; meta-regression variables of, 464–465; search venues used in literature search on, 451t; testing for publication bias, 459, 461–462/fg; testing for publication bias and funnel plots on, 459, 461–462/fg; theoretical foundations of the, 444–455

Psych-INFO, 56, 57t

Public Agenda, 315

Public health: performance management forest plot on, 376/fg; performance management meta-regression analysis on, 389t

Public housing: as federal housing policy (1937 to mid-1970s), 399; increasing concerns over concentrating poverty in, 400. See also Housing Act (1937); Poverty deconcentration policies

Public management and policy: adapting meta-analysis for, 31–34, 481–484; advanced meta-regression for, 191–230; growth of research output in, 2–3; meta-analysis role in, 9–17

Public management and policy scholarship: examining the future of meta-analysis in, 475–486; hypothesis testing and theory building, 11–12; improving measurement, 10–11; increased emphasis on cumulative, 481; increased emphasis on evidence-based, 481; meta-analysis adaptation for, 31–34, 481–484; meta-analysis applications to, 9–12; meta-analysis used to aggregate knowledge in, 485; problem identification, 9–10; producing cumulative knowledge objective of, 476; program evaluation, 11; questions to ask on using meta-analysis in, 476–478. See also Scientific research

Public policy research firms reports, 60

Public service motivation (PSM): areas for future research on, 471; definitions of, 422–423; examining the relationship of performance to, 433–444; PSM-performance study on, 444–472

Publication bias: consequences of, 235–238; description of, 231–232; economics research, 268–269; educational voucher data analysis, 337/fg–339; as meta-analysis criticism, 28, 232; performance management analysis, 377–379; poverty deconcentration outcomes study, 418, 421–422, 423/fg; remedying and preventing, 233–266; sources of, 233–235; types of, 232–233. See also Original studies; Selection bias models

Publication bias consequences: for estimates of effect sizes, 236–238; for scientific consensus in published literature, 235–236

Publication bias identification: alternative tests for, 250–251; Begg test for, 252, 425; criticisms of the Egger test for, 245–251; FAT-MST-PET-MRA as test for, 272–291; funnel plots and radial plots used for, 238–243, 418, 421–422, 423/fg; poverty deconcentration outcomes study, 418, 421–422, 423/fg; test results on performance management, 378t; testing for bias in Stata, 251–253; tests for funnel asymmetry, 243–245/fg

Publication bias remedies: the fail-safe N, 253–256; including grey literature,
265–266; preventing publication bias, 265–266; selection bias models, 259–263; trim-and-fill methods, 256–258; weighted regression models, 263–265
Publication bias sources: decisions of researchers as, 234–235; decisions of reviewers and editors as, 233–234

Q
Q statistic, 123
Q test, 122–123
Quality of interest: examples of meta-analysis, 40; identified for specific research questions, 41. See also Effect sizes

R
R-based effect sizes: correlation coefficient r, 105–109; formulas for, 116t; overview of, 105. See also Fisher’s Z
Racial/ethnic differences: poverty rates, 404; spatial concentrations of poverty in U.S. cities, 404–405
Radial plot: description of, 242; of precision against standardized effect size, 244t; radial plot of precision against standardized effect size, 243f
RAND Corporation, 60
Random effects models: assessing effect size heterogeneity using fixed or, 121–124; definition of, 18; estimating random effects variance component, 124; meta-analysis using approach of, 120–121; meta-regression, 171–189; performance management data analysis using, 373–374; Q statistic, 123; Q test, 122–123; weighting fixed inverse variance, 125
Reinventing Government (Osborne and Gaebler), 354, 355
REML. (restricted maximum likelihood): comparing FEML to, 174; MOM (method of moments) estimator, 173–174; REMR (random effects meta-regression), 172–173; WLS (weighted least squares) to estimate, 174
REMR (random effects meta-regression): advantages over FEMR of, 171–172; with clustered standard errors in Stata, 197–200; estimating the random effects, 174; estimating the variance component, 172–174; goodness of fit, 176–177, 181; hypothesis testing, 175–176, 180–181; poverty deconcentration outcomes study fixed effects vs., 417–422; prediction and power of, 176; in Stata, 177–187; threats to inference in, 187–189; WCB implemented in, 202–204. See also Meta-regression models
Research questions: meta-analysis, 41–42; quality of interest identified for specific, 41
Review Manager (RevMan), 163
Review of Policy Research, 23
Risk difference effect (RD), 115
Risk ratio (RR), 114–115
S
School choice: debate over, 311–312; public support for, 315–316. See also Educational voucher programs
School Choice Demonstration Project (SCDP), 316
Science (journal), 15
Scientific research: increases in production and dissemination of, 2–3; right time for embracing meta-analysis tools in, 3–4; two perspectives on how knowledge is generated by, 1–2. See also Meta-analysis; Public management and policy scholarship
Scoping stage of meta-analysis, 21
Search profile: applying the, 55; bounding the literature search, 54–55; description of, 51–52; identifying authors, 54; identifying keywords for, 52–54; leveraging citations, 54
Search strategy: developed for the grey literature, 60–61; developed for the published literature, 55–59; sources for published and grey research, 57t–58t
Sears List of Subject Headings, 53
Section 8 housing program. See Moving to Opportunity (MTO)
Selection bias models: Copas method for estimation, 261–263; effect size equation used in, 259; Hedges’s method for estimation, 260–261; limits of the, 263; remedying publication bias using, 259–263; selection equation used in, 259. See also Publication bias
Simmons-Harris, Zelman v., 316–317
Simulations: estimating size of the FAT, 279/fg; structure used for assessing performance of the FAT, 277–278

Social capital theory, 406–407

Social Science Citation Index (SSCI): no articles listed in “meta-analysis” and “policy” topic fields in 1990, 7; number of “meta-analysis” articles by category in, 5/fg

Social science disciplines, 2–3

Social Science Research Network (SSRN), 61, 63

Sociological Abstracts, 61

“Spatial mismatch,” 404

Stata software: cluster robust standard errors estimated in, 199–200;
Comprehensive Meta-Analysis (CMA), 163; description of, 96; FEMR (fixed effects meta-regression) in, 163–170; funnel plot generated with confunnel fishersterr command, 240; GEE (generalized estimating equations) meta-regression in, 222–224; interpreting REMR results in Metareg, 178/fg–179/fg, 181–182; interpreting results from fixed effects regression in, 168–170; metabias command to conduct Egger test, 252; metafunnel command to produce funnel plot for effect sizes, 251; MetaWin, 163; REMR (random effects meta-regression) in, 177–187; REMR with clustered standard errors in, 197–200; Review Manager (RevMan), 163; testing for publication bias in, 251–253; trim-and-fill using metatrim fishersterr, funnel command in, 257–258/fg; WCB (“wild cluster bootstrap”) implemented in, 204–206; WLS (weighted least squares) in fixed effects meta-regression, 153–154, 165–168/fg. See also Metareg command

Structural equation modeling, 80

Studies: definition of, 69;
meta-analysis recommended for, 69. See also Original studies

Study research design:
experimental with random assignment, 80;
meta-analysis adapted for public management and policy, 32; muligroup pre-post quasi-experiment, 80;
muligroup quasi-experiment posttest only, 80; one group pre-post quasi-experiment, 80; one group quasi-experiment posttest only, 80; two group pre-post quasi-experiment, 80; two group quasi-experiment posttest only, 80

“The Surprising Consensus on School Choice” (Greene), 323

T

Tetrachoric correlation coefficient, 114

Theories: Advocacy Coalition Framework (ACF), 12;

Think tanks reports, 60

Threats to inference: REML (restricted maximum likelihood), 187–189; REMR collinearity and micronumerusity, 187–188; REMR endogeneity, 188–189; REMR measurement error in the endogenous variable, 188

Total Quality Management, 353, 355

Transportation Research Board, 15

Transportation Research Record, 15

Trim-and-fill methods: funnel plot for “trimmed and filled” effect sizes plotted against effect size standard errors, 258/fg; remediying publication bias using, 256–258

U

University Microfilms International (University of Michigan), 61

Urban Institute, 355, 363

U.S. Administration for Children and Families, 16

U.S. Department of Education, Institute of Educational Sciences of, 9
U.S. Department of Health and Human Services (HHS), 16, 55, 358
U.S. Department of Housing and Urban Development (HUD), 400, 401
U.S. Department of Justice, 16
U.S. Department of Transportation, 16
U.S. Environmental Protection Agency (EPA), 16
U.S. Food and Drug Administration, 16
U.S. Government Accountability Office (GAO), 15–16, 55
U.S. Government Printing Office, 56
U.S. housing policies: history of poverty deconcentration programs under, 399–402; moving from public housing projects to mixed-income communities, 398–399; studies on poverty deconcentration policies impact on individual outcomes, 408–438; theoretical foundations of poverty deconcentration, 402–408
U.S. housing programs:
Gautreaux social experiment, 399, 400, 401; HOPE VI (Housing Opportunities for People Everywhere), 400–401; Housing Choice Vouch Program (MTO) [Section 8], 399, 400; Moving to Opportunity, 399
U.S. Office of Management and Budget, 16

V

Variables: dependent, 20, 144–145; effect sized employed as dependent, 20; focal predictor label of key independent, 17; independent, 17, 381–382t, 427–429. See also Mediator variables; Moderator variables

W

VWLS, 183–184

Washington, DC Opportunity Scholarship Program, 317, 321

WCB (“wild cluster bootstrap”):

Worker Investment Act, 365

Working papers sources, 60–61

WorldCat, 56, 61

Z

Zelman v. Simmons-Harris, 316–317

Zero-Based Budgeting, 355