Contents

1 On the Point of this Book 101

2 Basic Data Types 201
 2.1 Why You Might Care 202
 2.2 Booleans, Numbers, and Arithmetic 203
 2.3 Sets: Unordered Collections 222
 2.4 Sequences, Vectors, and Matrices: Ordered Collections 237
 2.5 Functions 253
 2.6 Chapter at a Glance 270

3 Logic 301
 3.1 Why You Might Care 302
 3.2 An Introduction to Propositional Logic 303
 3.3 Propositional Logic: Some Extensions 317
 3.4 An Introduction to Predicate Logic 331
 3.5 Predicate Logic: Nested Quantifiers 349
 3.6 Chapter at a Glance 362
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Proofs</td>
<td>401</td>
</tr>
<tr>
<td>4.1</td>
<td>Why You Might Care</td>
<td>402</td>
</tr>
<tr>
<td>4.2</td>
<td>Error-Correcting Codes</td>
<td>403</td>
</tr>
<tr>
<td>4.3</td>
<td>Proofs and Proof Techniques</td>
<td>423</td>
</tr>
<tr>
<td>4.4</td>
<td>Some Examples of Proofs</td>
<td>441</td>
</tr>
<tr>
<td>4.5</td>
<td>Common Errors in Proofs</td>
<td>458</td>
</tr>
<tr>
<td>4.6</td>
<td>Chapter at a Glance</td>
<td>469</td>
</tr>
<tr>
<td>5</td>
<td>Mathematical Induction</td>
<td>501</td>
</tr>
<tr>
<td>5.1</td>
<td>Why You Might Care</td>
<td>502</td>
</tr>
<tr>
<td>5.2</td>
<td>Proofs by Mathematical Induction</td>
<td>503</td>
</tr>
<tr>
<td>5.3</td>
<td>Strong Induction</td>
<td>521</td>
</tr>
<tr>
<td>5.4</td>
<td>Recursively Defined Structures and Structural Induction</td>
<td>533</td>
</tr>
<tr>
<td>5.5</td>
<td>Chapter at a Glance</td>
<td>546</td>
</tr>
<tr>
<td>6</td>
<td>Analysis of Algorithms</td>
<td>601</td>
</tr>
<tr>
<td>6.1</td>
<td>Why You Might Care</td>
<td>602</td>
</tr>
<tr>
<td>6.2</td>
<td>Asymptotics</td>
<td>603</td>
</tr>
<tr>
<td>6.3</td>
<td>Asymptotic Analysis of Algorithms</td>
<td>617</td>
</tr>
<tr>
<td>6.4</td>
<td>Recurrence Relations: Analyzing Recursive Algorithms</td>
<td>631</td>
</tr>
<tr>
<td>6.5</td>
<td>Recurrence Relations: The Master Method</td>
<td>647</td>
</tr>
<tr>
<td>6.6</td>
<td>Chapter at a Glance</td>
<td>657</td>
</tr>
<tr>
<td>7</td>
<td>Number Theory</td>
<td>701</td>
</tr>
<tr>
<td>7.1</td>
<td>Why You Might Care</td>
<td>702</td>
</tr>
<tr>
<td>7.2</td>
<td>Modular Arithmetic</td>
<td>703</td>
</tr>
<tr>
<td>7.3</td>
<td>Primality and Relative Primality</td>
<td>717</td>
</tr>
<tr>
<td>7.4</td>
<td>Multiplicative Inverses</td>
<td>734</td>
</tr>
<tr>
<td>7.5</td>
<td>Cryptography</td>
<td>745</td>
</tr>
<tr>
<td>7.6</td>
<td>Chapter at a Glance</td>
<td>756</td>
</tr>
</tbody>
</table>
List of Computer Science Connections

Chapter 2: Basic Data Types
Integers and ints, Reals and floats 217
Computing Square Roots, and Not Computing Square Roots 218
Set Building in Languages 233
Clustering 234
The Vector Space Model 248
Rotation Matrices 249
Hash Tables and Hash Functions 267

Chapter 3: Logic
Natural Language Processing, Ambiguity, and Truth 314
Computational Complexity, Satisfiability, and $1,000,000 326
Short-Circuit Evaluation, Optimization, and Modern Compilers 327
Game Trees, Logic, and Winning Tic-Tac(-Toe) 344
Nonlocal Variables and Lexical vs. Dynamic Scoping 345
Gödel's Incompleteness Theorem 346
Currying 357
Chapter 4: Proofs

Reed–Solomon Codes 418
Are Massive Computer-Generated Proofs Proofs? 437
Paul Erdős, “The Book,” and Erdős Numbers 438
Cryptography and the Generation of Prime Numbers 454
Other Uncomputable Problems (That You Might Care About) 455
The Cost of Missing Proofs: Some Famous Bugs in CS 464

Chapter 5: Mathematical Induction

Loop Invariants 517
Triangulation, Computer Graphics, and 3D Surfaces 528
Max Heaps 529
Grammars, Parsing, and Ambiguity 543

Chapter 6: Analysis of Algorithms

Moore’s Law 613
Multitasking, Garbage Collection, and Wall Clocks 627
Time, Space, and Complexity 628
AVL Trees 643
Divide-and-Conquer Algorithms and Matrix Multiplication 655

Chapter 7: Number Theory

Converting Between Bases, Binary Representation, and Generating Strings 714
Secret Sharing 730
Error Correction with Reed–Solomon Codes 731
Miller–Rabin Primality Test 742
Diffie–Hellman Key Exchange 753
Chapter 8: Relations

Relational Databases 815
Regular Expressions 830
Deterministic Finite Automata (DFAs) 846
The Painter’s Algorithm and Hidden-Surface Removal 847

Chapter 9: Counting

Running out of IP addresses, and IPv6 919
A Lower Bound for Comparison-Based Sorting 920
Infinite Cardinalities (and Problems that Can’t Be Solved by Any Program) 937
Lossy and Lossless Compression 938
Brute Force Algorithms and Dynamic Programming 959
The Enigma Machine and the First Computer 960

Chapter 10: Probability

Quantum Computing 1016
Information, Charles Dickens, and the Entropy of English 1017
Speech Recognition, Bayes’ Rule, and Language Models 1036
Bayesian Modeling and Spam Filtering 1037
A Randomized Algorithm for Finding Medians 1060
The Monte Carlo Method 1062

Chapter 11: Graphs and Trees

Degree Distributions and the Heavy Tail 1123
Graph Drawing, Graph Layouts, and the 9/11 Memorial 1124
The Bowtie Structure of the Web 1142
Garbage Collection 1143
Directed Graphs, Cycles, and Kidney Transplants 1159
Binary Search Trees 1160
Random Walks and Ranking Web Pages 1174