Contents

List of Contributors xi
Preface xv

1 Plasmonic-Fluorescent and Magnetic-Fluorescent Composite Nanoparticle as Multifunctional Cellular Probe 1
   Arindam Saha, SK Basiruddin, and Nikhil Ranjan Jana
   1.1 Introduction 1
   1.2 Synthesis Design of Composite Nanoparticle 2
      1.2.1 Method 1: Polycryliclate Coating-Based Composite of Nanoparticle and Organic Dye 3
      1.2.2 Method 2: Polycryliclate Coating-Based Composite of Two Different Nanoparticles 3
      1.2.3 Method 3: Ligand Exchange Approach-Based Composite of Two Different Nanoparticles 4
   1.3 Property of Composite Nanoparticles 5
      1.3.1 Optical Property 5
      1.3.2 Fluorophore Lifetime Study 7
   1.4 Functionalization and Labeling Application of Composite Nanoparticle 8
   1.5 Conclusion 8

2 Compatibility of Metal-Induced Fluorescence Enhancement with Applications in Analytical Chemistry and Biosensing 13
   Fang Xie, Wei Deng, and Ewa M. Goldys
   2.1 Introduction 13
   2.2 Homogeneous Protein Sensing MIFE Substrates 14
      2.2.1 Core–Shell Approach 14
      2.2.2 Homogeneous Large Au Nanoparticle Substrates 16
      2.2.3 Commercial Klarite™ Substrate 18
   2.3 Ag Fractal Structures 19
      2.3.1 Reasons for High Enhancement Factors in Nanowire Structures 19
      2.3.2 Ag Dendritic Structure—Homogeneous Silver Fractal 22
   2.4 MIFE with Membranes for Protein Dot Blots 25
   2.5 MIFE with Flow Cytometry Beads and Single Particle Imaging 30

3 Plasmonic Enhancement of Molecule-Doped Core–Shell and Nanoshell on Molecular Fluorescence 37
   Jiunn-Woei Liaw, Chuan-Li Liu, Chong-Yu Jiang, and Mao-Kuen Kuo
   3.1 Introduction 37
   3.2 Theory 38
      3.2.1 Plane Wave Interacting with an Multilayered Sphere 39
      3.2.2 Excited Dipole Interacting with a Multilayered Sphere 40
      3.2.3 EF on Fluorescence 40
   3.3 Numerical Results and Discussion 41
      3.3.1 Core–Shell 41
4 Controlling Metal-Enhanced Fluorescence Using Bimetallic Nanoparticles 73
Debosruti Dutta, Sanchari Chowdhury, Chi Ta Yang, Venkat R. Bhethanabotla, and Babu Joseph
4.1 Introduction 73
4.2 Experimental Methods 74
4.2.1 NP Synthesis by Sputtering and Annealing 74
4.2.1.2 Nanoparticle Synthesis by the Polyol Process 74
4.2.2 Particle Characterization 75
4.2.3 Fluorescence Spectroscopy 76
4.2.3.1 On Sputtered and Annealed Ag–Cu NPs 76
4.2.3.2 On Ag–Cu NPs Synthesized with the Polyol Process 79
4.3 Theoretical Modeling 79
4.3.1 Modeling SPR Using Mie Theory 79
4.3.2 Modeling of Metal-Enhanced Fluorescence Modified Gersten–Nitzan Model 81
4.3.3 Modeling MEF Using Finite-Difference Time-Domain (FDTD) Calculations 85
4.4 Conclusion and Future Directions 87

5 Roles of Surface Plasmon Polaritons in Fluorescence Enhancement 91
K. F. Chan, K. C. Hui, J. Li, C. H. Fok, and H. C. Ong
5.1 Introduction 91
5.1.1 Surface Plasmon-Mediated Emission 91
5.1.2 Excitation of Propagating and Localized Surface Plasmon Polaritons in Periodic Metallic Arrays 93
5.1.3 Surface Plasmon-Mediated Emission from Periodic Arrays 95
5.2 Experimental 95
5.2.1 Sample Preparation 95
5.2.2 Optical Characterizations 96
5.3 Result and Discussion 97
5.3.1 The Decay Lifetimes of Metallic Hole Arrays 97
5.3.2 Dependence of Decay Lifetime on Hole Size 98
5.3.3 Comparison between Dispersion Relation and PL Mapping 100
5.3.4 Comparison of the Coupling Rate $\Gamma_b$ of Different SPP Modes 102
5.3.5 Photoluminescence Dependence on Hole Size 104
5.3.6 Dependence of Fluorescence Decay Lifetime on Hole Size 105
5.4 Conclusions 107

6 Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency 111
Kareem Elsayad and Katrin G. Heinze
6.1 Introduction 111
6.2 Background 111
6.3 Theory 112
6.4 Summary 120
7 Metal-Enhanced Fluorescence in Biosensing Applications 121
Ruoyun Lin, Chenxi Li, Yang Chen, Feng Liu, and Na Li
7.1 Introduction 121
7.2 Substrates 121
7.3 Distance Control 128
7.4 Summary and Outlook 132

8 Long-Range Metal-Enhanced Fluorescence 137
Ofer Kedem
8.1 Introduction 137
8.2 Collective Effects in NP Films 138
8.3 Investigations of Metal–Fluorophore Interactions at Long Separations 138
8.3.1 Distance-Dependent Fluorescence of Tris(bipyridine)ruthenium(II) on Supported Plasmonic Gold NP Ensembles 138
8.3.2 Lifetime 139
8.3.3 Intensity 141
8.3.4 Emission Wavelength and Linewidth 143
8.4 Conclusions 146

9 Evolution, Stabilization, and Tuning of Metal-Enhanced Fluorescence in Aqueous Solution 151
Jayasmita Jana, Mainak Ganguly, and Tarasankar Pal
9.1 Introduction 151
9.1.1 Coinage Metal Nanoparticles in Metal-Enhanced Fluorescence 153
9.2 Metal-Enhanced Fluorescence in Solution Phase 154
9.2.1 Metal-Enhanced Fluorescence from Metal(0) in Solution 154
9.2.1.1 Silver- and Gold-Enhanced Fluorescence 154
9.2.1.2 Selectivity for Silver-Enhanced Fluorescence 157
9.2.1.3 Silver-Enhanced Fluorescence in Diiminic Schiff Bases 161
9.2.1.4 Copper-Enhanced Fluorescence 165
9.2.1.5 Tuning of Metal-Enhanced Fluorescence 166
9.3 Applications of Metal-Enhanced Fluorescence 169
9.3.1 Sensing of Biomolecules 169
9.3.2 Sensing of Toxic Metals 171
9.4 Conclusion 174

10 Distance and Location-Dependent Surface Plasmon Resonance-Enhanced Photoluminescence in Tailored Nanostructures 179
Saji Thomas Kochuveedu and Dong Ha Kim
10.1 Introduction 179
10.2 Effect of SPR in PL 181
10.2.1 Photoluminescence 181
10.2.1.1 Radiative Decay in MEF 181
10.2.1.2 Nonradiative Decay in MEF 182
10.2.2 Enhancement of Emission by SPR 182
10.2.2.1 Resonance Energy Transfer 182
10.2.2.2 NFE Mechanism 183
10.2.3 Quenching of Emission by SPR 184
10.3 Effect of SPR in FRET 185
10.3.1 FRET 185
10.3.2 SPR-Induced Enhanced FRET 188
10.3.3 Effect of the Position, Concentration, and Size of Plasmonic Nanostructures in FRET System 189
10.4 Conclusions and Outlook 191
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Fluorescence Quenching by Plasmonic Silver Nanoparticles</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>M. Umadevi</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Metal Nanoparticles</td>
<td>197</td>
</tr>
<tr>
<td>11.2</td>
<td>Fluorescence Quenching</td>
<td>197</td>
</tr>
<tr>
<td>11.3</td>
<td>Mechanism behind Quenching</td>
<td>198</td>
</tr>
<tr>
<td>12</td>
<td>AgO$_x$ Thin Film for Surface-Enhanced Raman Spectroscopy</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Ming Lun Tseng, Cheng Hung Chu, Jie Chen, Kuang Sheng Chung, and Din Ping Tsai</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>203</td>
</tr>
<tr>
<td>12.1.1</td>
<td>SERS on the Laser-Treated AgO$_x$ Thin Film</td>
<td>203</td>
</tr>
<tr>
<td>12.1.1.1</td>
<td>Experimental Method</td>
<td>203</td>
</tr>
<tr>
<td>12.1.1.2</td>
<td>Tunabe SERS Enhancement</td>
<td>204</td>
</tr>
<tr>
<td>12.1.1.3</td>
<td>SERS-Active Nanostructure Made on Flexible Substrate</td>
<td>205</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Annealed AgO$_x$ Thin Film for SERS</td>
<td>206</td>
</tr>
<tr>
<td>12.2</td>
<td>Conclusion</td>
<td>206</td>
</tr>
<tr>
<td>13</td>
<td>Plasmon-Enhanced Two-Photon Excitation Fluorescence and Biomedical Applications</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Taishi Zhang, Tingting Zhao, Peiyian Yuan, and Qing-Hua Xu</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>211</td>
</tr>
<tr>
<td>13.2</td>
<td>Metal–Chromophore Interactions</td>
<td>212</td>
</tr>
<tr>
<td>13.3</td>
<td>Plasmon-Enhanced One-Photon Excitation Fluorescence</td>
<td>214</td>
</tr>
<tr>
<td>13.4</td>
<td>Plasmon-Enhanced Two-Photon Excitation Fluorescence</td>
<td>215</td>
</tr>
<tr>
<td>13.5</td>
<td>Conclusions and Outlook</td>
<td>220</td>
</tr>
<tr>
<td>14</td>
<td>Fluorescence Biosensors Utilizing Grating-Assisted Plasmonic Amplification</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>Koji Toma, Mana Toma, Martin Bauch, Simone Hageneder, and Jakub Dostalek</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>227</td>
</tr>
<tr>
<td>14.2</td>
<td>SPCE in Vicinity to Metallic Surface</td>
<td>227</td>
</tr>
<tr>
<td>14.3</td>
<td>SPCE Utilizing SP Waves with Small Losses</td>
<td>230</td>
</tr>
<tr>
<td>14.4</td>
<td>Nondiffractive Grating Structures for Angular Control of SPCE</td>
<td>232</td>
</tr>
<tr>
<td>14.5</td>
<td>Diffractive Grating Structures for Angular Control of SPCE</td>
<td>234</td>
</tr>
<tr>
<td>14.6</td>
<td>Implementation of Grating-Assisted SPCE to Biosensors</td>
<td>236</td>
</tr>
<tr>
<td>14.7</td>
<td>Summary</td>
<td>237</td>
</tr>
<tr>
<td>15</td>
<td>Surface Plasmon-Coupled Emission: Emerging Paradigms and Challenges for Bioapplication</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Shuo-Hui Cao, Yan-Yun Zhai, Kai-Xin Xie, and Yao-Qun Li</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>241</td>
</tr>
<tr>
<td>15.2</td>
<td>Properties of SPCE</td>
<td>242</td>
</tr>
<tr>
<td>15.3</td>
<td>Current Developments of SPCE in Bioanalysis</td>
<td>243</td>
</tr>
<tr>
<td>15.3.1</td>
<td>New Substrates Designing for Biochip</td>
<td>243</td>
</tr>
<tr>
<td>15.3.2</td>
<td>Optical Switch for Biosensing</td>
<td>244</td>
</tr>
<tr>
<td>15.3.3</td>
<td>Full-Coupling Effect for Bioapplication</td>
<td>245</td>
</tr>
<tr>
<td>15.3.4</td>
<td>Hot-Spot Nanostructure-Based Biosensor</td>
<td>248</td>
</tr>
<tr>
<td>15.3.5</td>
<td>Imaging Apparatus for High-Throughput Detection</td>
<td>249</td>
</tr>
<tr>
<td>15.3.6</td>
<td>Waveguide Mode SPCE to Widen Detection Region</td>
<td>251</td>
</tr>
<tr>
<td>15.4</td>
<td>Perspectives</td>
<td>252</td>
</tr>
<tr>
<td>16</td>
<td>Plasmon-Enhanced Luminescence with Shell-Isolated Nanoparticles</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>Sabrina A. Camacho, Pedro H. B. Aoki, Osvaldo N. Oliveira, Jr, Carlos J. L. Constantino, and Ricardo F. Aroca</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>257</td>
</tr>
<tr>
<td>16.2</td>
<td>Synthesis of Shell-Isolated Nanoparticles</td>
<td>259</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Nanosphere Au-SHINs</td>
<td>259</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Nanorod Au-SHINs</td>
<td>260</td>
</tr>
<tr>
<td>16.3</td>
<td>Plasmon-Enhanced Luminescence in Liquid Media</td>
<td>262</td>
</tr>
<tr>
<td>16.4</td>
<td>Enhanced Luminescence on Solid Surfaces and Spectral Profile Modification</td>
<td>265</td>
</tr>
<tr>
<td>16.4.1</td>
<td>SHINEF on Langmuir–Blodgett Films</td>
<td>266</td>
</tr>
</tbody>
</table>
17 Controlled and Enhanced Fluorescence Using Plasmonic Nanocavities 271
Gleb M. Akselrod, David R. Smith, and Maiken H. Mikkelsen
17.1 Introduction to Plasmonic Nanocavities 271
17.2 Summary of Fabrication 272
17.3 Properties of the Nanocavity 273
17.3.1 Nanocavity Resonances 273
17.3.2 Tuning the Resonance 274
17.3.3 Directional Scattering and Emission 276
17.4 Theory of Emitters Coupled to Nanocavity 277
17.4.1 Simulation of Nanocavity 278
17.4.2 Enhancement in the Spontaneous Emission Rate 278
17.5 Absorption Enhancement 280
17.6 Purcell Enhancement 282
17.7 Ultrafast Spontaneous Emission 286
17.8 Harnessing Multiple Resonances for Fluorescence Enhancement 288
17.9 Conclusions and Outlook 291

18 Plasmonic Enhancement of UV Fluorescence 295
Xiaojin Jiao, Yunshan Wang, and Steve Blair
18.1 Introduction 295
18.2 Plasmonic Enhancement 295
18.3 Analytical Description of PE of Fluorescence 296
18.4 Overview of Research on Plasmon-Enhanced UV Fluorescence 297
18.4.1 Material Selection 297
18.4.2 Structure Choice 301
18.4.3 Experimental Measurement 303
18.4.3.1 Characterization of SPR Properties 303
18.4.3.2 Fluorescence Enhancement 304
18.4.3.3 Lifetime Measurement 305
18.4.3.4 Toward Quantitative Fluorescence Analysis 305
18.5 Summary 306

Index 309