CONTENTS

Preface xiii
Preface to Second Edition xvii

1 Heat Conduction Fundamentals 1
   1-1 The Heat Flux, 2
   1-2 Thermal Conductivity, 4
   1-3 Differential Equation of Heat Conduction, 6
   1-4 Fourier’s Law and the Heat Equation in Cylindrical and Spherical Coordinate Systems, 14
   1-5 General Boundary Conditions and Initial Condition for the Heat Equation, 16
   1-6 Nondimensional Analysis of the Heat Conduction Equation, 25
   1-7 Heat Conduction Equation for Anisotropic Medium, 27
   1-8 Lumped and Partially Lumped Formulation, 29

References, 36
Problems, 37

2 Orthogonal Functions, Boundary Value Problems, and the Fourier Series 40
   2-1 Orthogonal Functions, 40
   2-2 Boundary Value Problems, 41
   2-3 The Fourier Series, 60
   2-4 Computation of Eigenvalues, 63
   2-5 Fourier Integrals, 67
References, 73
Problems, 73

3 Separation of Variables in the Rectangular Coordinate System 75
3-1 Basic Concepts in the Separation of Variables Method, 75
3-2 Generalization to Multidimensional Problems, 85
3-3 Solution of Multidimensional Homogenous Problems, 86
3-4 Multidimensional Nonhomogeneous Problems: Method of Superposition, 98
3-5 Product Solution, 112
3-6 Capstone Problem, 116
References, 123
Problems, 124

4 Separation of Variables in the Cylindrical Coordinate System 128
4-1 Separation of Heat Conduction Equation in the Cylindrical Coordinate System, 128
4-2 Solution of Steady-State Problems, 131
4-3 Solution of Transient Problems, 151
4-4 Capstone Problem, 167
References, 179
Problems, 179

5 Separation of Variables in the Spherical Coordinate System 183
5-1 Separation of Heat Conduction Equation in the Spherical Coordinate System, 183
5-2 Solution of Steady-State Problems, 188
5-3 Solution of Transient Problems, 194
5-4 Capstone Problem, 221
References, 233
Problems, 233
Notes, 235

6 Solution of the Heat Equation for Semi-Infinite and Infinite Domains 236
6-1 One-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Cartesian Coordinate System, 236
6-2 Multidimensional Homogeneous Problems in a Semi-Infinite Medium for the Cartesian Coordinate System, 247
6-3 One-Dimensional Homogeneous Problems in An Infinite Medium for the Cartesian Coordinate System, 255
6-4 One-Dimensional homogeneous Problems in a Semi-Infinite Medium for the Cylindrical Coordinate System, 260
10 One-Dimensional Composite Medium

10-1 Mathematical Formulation of One-Dimensional Transient Heat Conduction in a Composite Medium, 393
10-2 Transformation of Nonhomogeneous Boundary Conditions into Homogeneous Ones, 395
10-3 Orthogonal Expansion Technique for Solving $M$-Layer Homogeneous Problems, 401
10-4 Determination of Eigenfunctions and Eigenvalues, 407
10-5 Applications of Orthogonal Expansion Technique, 410
10-6 Green’s Function Approach for Solving Nonhomogeneous Problems, 418
10-7 Use of Laplace Transform for Solving Semi-Infinite and Infinite Medium Problems, 424

References, 429
Problems, 430

11 Moving Heat Source Problems

11-1 Mathematical Modeling of Moving Heat Source Problems, 434
11-2 One-Dimensional Quasi-Stationary Plane Heat Source Problem, 439
11-3 Two-Dimensional Quasi-Stationary Line Heat Source Problem, 443
11-4 Two-Dimensional Quasi-Stationary Ring Heat Source Problem, 445

References, 449
Problems, 450

12 Phase-Change Problems

12-1 Mathematical Formulation of Phase-Change Problems, 454
12-2 Exact Solution of Phase-Change Problems, 461
12-3 Integral Method of Solution of Phase-Change Problems, 474
12-5 Enthalpy Method for Solution of Phase-Change Problems: A Numerical Solution, 484

References, 490
Problems, 493
Note, 495

13 Approximate Analytic Methods

13-1 Integral Method: Basic Concepts, 496
13-2 Integral Method: Application to Linear Transient Heat Conduction in a Semi-Infinite Medium, 498
13-3 Integral Method: Application to Nonlinear Transient Heat Conduction, 508
| 13-4 | Integral Method: Application to a Finite Region, 512 |
| 13-5 | Approximate Analytic Methods of Residuals, 516 |
| 13-6 | The Galerkin Method, 521 |
| 13-7 | Partial Integration, 533 |
| 13-8 | Application to Transient Problems, 538 |
| References, 542 |
| Problems, 544 |

| 14 | Integral Transform Technique |
| 14-1 | Use of Integral Transform in the Solution of Heat Conduction Problems, 548 |
| 14-2 | Applications in the Rectangular Coordinate System, 556 |
| 14-3 | Applications in the Cylindrical Coordinate System, 572 |
| 14-4 | Applications in the Spherical Coordinate System, 589 |
| 14-5 | Applications in the Solution of Steady-state problems, 599 |
| References, 602 |
| Problems, 603 |
| Notes, 607 |

| 15 | Heat Conduction in Anisotropic Solids |
| 15-1 | Heat Flux for Anisotropic Solids, 615 |
| 15-2 | Heat Conduction Equation for Anisotropic Solids, 617 |
| 15-3 | Boundary Conditions, 618 |
| 15-4 | Thermal Resistivity Coefficients, 620 |
| 15-5 | Determination of Principal Conductivities and Principal Axes, 621 |
| 15-6 | Conductivity Matrix for Crystal Systems, 623 |
| 15-7 | Transformation of Heat Conduction Equation for Orthotropic Medium, 624 |
| 15-8 | Some Special Cases, 625 |
| 15-9 | Heat Conduction in an Orthotropic Medium, 628 |
| 15-10 | Multidimensional Heat Conduction in an Anisotropic Medium, 637 |
| References, 645 |
| Problems, 647 |
| Notes, 649 |

| 16 | Introduction to Microscale Heat Conduction |
| 16-1 | Microstructure and Relevant Length Scales, 652 |
| 16-2 | Physics of Energy Carriers, 656 |
| 16-3 | Energy Storage and Transport, 661 |
| 16-4 | Limitations of Fourier’s Law and the First Regime of Microscale Heat Transfer, 667 |
| 16-5 | Solutions and Approximations for the First Regime of Microscale Heat Transfer, 672 |
16-6  Second and Third Regimes of Microscale Heat Transfer, 676
16-7  Summary Remarks, 676
References, 676

APPENDIXES 679

Appendix I  Physical Properties 681
  Table I-1 Physical Properties of Metals, 681
  Table I-2 Physical Properties of Nonmetals, 683
  Table I-3 Physical Properties of Insulating Materials, 684

Appendix II  Roots of Transcendental Equations 685

Appendix III  Error Functions 688

Appendix IV  Bessel Functions 691
  Table IV-1 Numerical Values of Bessel Functions, 696
  Table IV-2 First 10 Roots of $J_n(z) = 0, n = 0, 1, 2, 3, 4, 5, 704$
  Table IV-3 First Six Roots of $\beta J_1(\beta) - c J_0(\beta) = 0, 705$
  Table IV-4 First Five Roots of $J_0(\beta)Y_0(c\beta) - Y_0(\beta)J_0(c\beta) = 0, 706$

Appendix V  Numerical Values of Legendre Polynomials of the First Kind 707

Appendix VI  Properties of Delta Functions 710

Index 713