INDEX

A
Anisotropic medium:
boundary conditions, 618
conductivity coefficients, 615
heat conduction equation, 617–618
heat flux, 615
heat generation, 640
multidimensional heat flow, 637
orthotropic medium, 624, 628
principal conductivities, 621, 624
thermal resistivity coefficients, 620
Approximate analytical methods:
collocation method, 517
energy generation, 504
Galerkin method, 519, 521
integral method, 496
least-squares method, 518
method of residuals, 516
partial integration, 533
Rayleigh–Ritz method, 519
Associated Legendre polynomials:
defined, 59
differential equation, 59
orthogonality of, 60, 235

B
Bessel functions:
asymptotic expressions for, 694
derivatives of, 49–50, 56, 694
graphical representations,
49, 55
first and second kind, 48
integrals of, 694
numerical values of, 696–703
modified Bessel functions, 55
orthogonality relations, 51
recurrence relations for, 704
roots of transcendental equations,
704–706
series expansion, 691
small argument expansion, 693
tabulations of, 696–703
Wronskian relationship, 695
Bessel’s differential equation:
 generalized, 47, 693
Binomial expansion, 385, 389
Biot number, 27, 30
Bisection method, 65
Boltzmann transport equation, 669
Boundary conditions:
 homogeneous, definition of, 19
 first type, 19
 linear interface, 21
 second type, 19
 symmetry condition, 23
 third type, 20
 transformation into homogeneous, 102
Brillouin zone, 658

C
Capstone problems:
 rectangular slab, 116
cylinder, 167
 sphere, 221
Casimir limit, 673
Cattaneo equation, 672
Cauchy’s equation, 133–134
Collocation method, 517
Composite medium:
 eigenfunctions for, 403–404, 407–409
 Green’s function for, 406, 418
 Laplace transform technique, 424
 orthogonal expansion, 401
 semi-infinite and infinite medium, 424
 steady-state, 400
Conduction, definition of, 1
Conductivity coefficients, 22–23
Conservation of energy, general statement, 8
Contact conductance, 22–23
Control volume approach, 7–10
Convergence of series summation:
 rectangular slab, 120–121
cylinder, 173
 sphere, 226
Crystal systems:
 conductivity matrix, 623–624
 microstructure, 653
 order of, 655
Cylindrical coordinates, 15, 129

D
Debye model of phonon:
 Debye temperature, 659
 general model, 658
Derived boundary conditions, 500
Differential control volume:
 Cartesian coordinates, 8
 cylindrical coordinates, 15
 spherical coordinates, 16
Differential equation of heat conduction:
 anisotropic solids, 617–618
 flux formulation, 244
 moving solids, 13
Dirac delta function:
 defined, 313, 710
 properties of, 710–711
Duhamel’s theorem:
 applications to:
 all step changes, 277
 semi-infinite region, 284
 slab, 281, 289
 solid cylinder, 292, 295
development of, 273–276
 general statement, 278
 internal energy generation, 294
 prescribed temperature functions, 290
treatment of discontinuities, 276

E
Eigenfunctions, definition of, 42
Eigenfunctions, tabulation for:
 hollow cylinder, 54
 rectangular slab, 46
 region outside a cylinder, 72
 semi-infinite medium, 239
 solid cylinder, 53
Eigenvalues:
 graphical representation, 64
 numerical solutions:
 bisection method, 65
 Newton–Raphson method, 66
 secant method, 66
 tabulated values, 67
INDEX

Electron energy carriers:
 characteristic wavelength, 660
 mean free path, 667
Enthalpy method, 484
Error function:
 asymptotic expansion of, 690
 derivatives of, 243, 690
 tabulation of, 688–689
Energy integral equation, 499, 506
Exponential integral function $E_i(z)$:
 definition, 470, 495
 derivative of, 472
 tables of, 471

F
Finite difference methods, 436
Flux formulation of heat conduction
 equation, 244
Fourier’s law:
 anisotropic medium, 28
 Boltzmann transport equation, 670
 Cartesian coordinates, 3
 cylindrical coordinates, 14, 128
 general definition, 2
 limitations of, 668
 orthotropic medium, 28
 scale factors, 14
 spherical coordinates, 15
Fourier integrals:
 trigonometric functions, 67–69
 Bessel functions, 70–72
Fourier series representation of an
 arbitrary function in:
 Cartesian coordinates, 62
 cylindrical coordinates, 62
 general Fourier series, 61
 spherical coordinates, 63

G
Galerkin method:
 application to:
 steady-state heat conduction, 522
 transient heat conduction, 538
 selection of basis functions, 523–527
 with partial integration, 533
Green’s function:
 definition, 301–302
 determination of, 306–308
 1-D general solution, 306
 2-D general solution, 305
 3-D general solution, 302
 products, 344
 tabulations of, 344–348
 type 1 boundary condition
 transform, 304
Green’s function applications:
 in cylindrical geometry, 329
 in rectangular geometry, 320, 324, 327
 in spherical geometry, 335, 339, 341
Green’s function for:
 hollow cylinder, 333
 hollow sphere, 335
 infinite medium, 317

H
Heat conduction equation for:
 anisotropic solids, 29
 Cartesian coordinates, 10
 cylindrical coordinates, 15, 128–129
 moving solids, 13
 nondimensional, 26
 orthogonal curvilinear coordinates, 28
 spherical coordinates, 15–16
Heat flux:
 for anisotropic medium, 615
 general heat flux, 3
 heat rate, 4
Heat sources:
 general representation with delta
 function, 312
 point source, 313–314
 line source, 332
 surface source, 315–316
Helmholtz equation:
 general solution of, 85–86
 separation of, 129–130
Heat transfer coefficient:
 defined, 17–18
 typical values, 18
Homogeneous boundary conditions:
 Sturm-Liouville requirements, 42, 78
 first type, 19
 second type, 19
 third type, 20
 symmetry condition, 23
 finiteness requirement, 24
 2π periodicity,
Homogeneous and nonhomogeneous problems, defined, 19, 76

I
Infinite medium:
 Fourier integral, 69, 255–256
 rectangular coordinates, 255
Integral formulation of heat equation, 11
Integral method, 496
Integral method applications to:
 cylindrical symmetry, 503
 energy generation, 504
 nonlinear heat conduction, 508, 510
 semi-infinite medium, 498
 1-D slab, 512
 spherical symmetry, 503
Integral transform technique:
 applications in:
 cylindrical geometry, 572–589
 multidimensional problems, 568–572
 rectangular geometry, 556–563
 semi-infinite and infinite medium, 564–568
 spherical geometry, 589–599
 steady-state problems, 599–602
 general theory, 548–550
 Interface boundary conditions, 21–22

K
Knudsen number, 668

L
Laplace’s equation, 11
Laplace transform definition, 355–356
Laplace transform inversion tables, 366–371
Laplace transform properties:
 change of scale, 359
 generalized convolution, 363
 linearity, 357
 of convolution, 363
 of delta function, 363
 of derivative, 358
 of integral, 359
 of unit step function, 362
 shift property, 360
 translated function, 360, 378
Laplace transform applications to:
 rectangular slab, 376
 relation to Duhamel’s theorem, 380
 semi-infinite medium, 373, 375
 small time approximation, 382–389
 sphere, 380
Lattice constants:
 defined, 654
 typical values, 655
Least-squares method, 518
Legendre’s associated differential equation, 59
Legendre’s associated polynomials, 59
Legendre’s differential equation, 56
Legendre polynomials:
 generalized Legendre function, 60
 graphical representation, 57
 first and second kind, 56
 hemisphere with type 1 base, 210
 hemisphere with type 2 base, 189
 numerical values, 707–709
 orthogonality, 58
Rodrigues’ formula, 57
tabulation of, 682
Leibniz’s rule, 286
Lumped system formulation, 29–31
Lumping, partial, 33

M
Mean free path:
defined, 664, 666
for electron, 667
for phonon, 666
Matthiessen’s rule, 664
typical values, 667
Method of residuals, 516
Microscale heat transfer:
first regime, 667, 669
limitations of Fourier’s law, 668
second regime, 676
third regime, 676
Microstructure and length scales, 652
Modified Bessel functions (see Bessel functions)
Moving heat source:
moving heat source terms, 434, 437
quasi-stationary condition, 436
ring heat source, 445
surface heat loss, 441

N
Newton’s law of cooling, 17
Newton–Raphson method, 66
Nondimensional analysis:
Biot number, 27
heat equation, 26
Normalization integral, 41

O
Orthogonal curvilinear coordinates:
heat conduction equation, 14
heat flux, 14
Orthogonal functions:
Bessel functions, 48–51
definition of, 40–41
Legendre polynomials, 56–58
weighting functions, 41
trigonometric functions, 43
Orthotropic solids:
equation of heat conduction, 624
steady-state, 631
transient, 633

P
Peclét number, 448
Perfectly insulated boundary condition:
for integral transform, 553
for solid cylinder, 151
for solid sphere, 198, 235
P function, 261
Phase-change problems:
analytic solutions, 461
convection effects, 457
enthalpy method, 484
formulation of 1-D problem,
454–455
integral method of solution, 474
line heat sink, 470
numerical solutions, 478
single-phase melting, 464
Stefan number, 460
supercooled liquid, 461
Phonons:
characteristic wavelength, 660
Debye model, 658
defined, 656–657
Point, line, and planar heat sources,
312–317
Product solutions, 112

R
Radiation boundary condition, 19
Rayleigh–Ritz method, 519
Representation of an arbitrary function
(see Fourier series)
Reynolds transport theorem, 12
Rodrigues’ formula, 57
S
Steady-state problems in:
 cylindrical coordinates, 131–150
 rectangular coordinates, 87–95, 104, 108–112
 spherical coordinates, 188–193
Scale factors:
 cylindrical coordinates, 14
 general, 14
 spherical coordinates, 15
Secant method, 66
Semi-infinite domain:
 2-D corner, 251
 cylindrical coordinates, 260
 heat flux formulation, 244
 hollow cylinder, 263
 hollow sphere, 269
 rectangular coordinates, 236, 234
 role in separation of variables, 90
 spherical coordinates, 268
 use of error function, 242–243
Separation of variables:
 general procedures, 84
 general requirements of, 76
 heat generation, 103, 108, 145, 162
 in cylindrical coordinates, 131
 in rectangular coordinates, 86
 in spherical coordinates, 183
 separation constant, 77–78
 superposition principle, 98–103
 transformation of nonhomogeneous boundaries, 102
 transient problems, 106, 110, 151
Specific heat:
 behavior with temperature, 662
 defined, 10, 661
 T^3 law, 662
Spherical coordinates and transforms, 184, 185
Splitting up heat conduction problems, 98–103
Stefan–Boltzmann constant, 17
Stefan–Boltzmann law, 16
Stefan number, 460
Step function, 360
Sturm–Liouville problem, 42
Supercooled liquid, 461
Superposition principle, 98–103
T
Temperature gradient, 1, 668
Thermal conductivity:
 anisotropic solids, 615
 Cahill–Pohl model, 665
 defined, 3
 effect of temperature, 6
 effective thermal conductivity, 647
 electron carrier model, 665
 metals at low temperature, 7
 phonon model, 665
 tensor equation, 28
 thermal resistivity, 620
 various materials, 5, 681–684
Thermal diffusivity, 10–11
Thermal penetration layer, 497–498
Thermal property tables for:
 insulating materials, 684
 metals, 681–682
 nonmetals, 683
Transcendental equations, roots of:
 general nature of, 82
 $\beta \tan \beta = C$, 685
 $\beta \cot \beta = -C$, 686
 $J_n(z) = 0$, 704
 $\beta J_1(\beta) - CJ_0(\beta) = 0$, 705
 $J_0(\beta)Y_0(C\beta) - Y_0(\beta)J_0(C\beta) = 0$, 706
Transient heat conduction in:
 cylindrical coordinates, 151–167
 rectangular coordinates, 95–98, 106–108
 spherical coordinates, 194–221
U
$U = rtT$ transformation, 195–196
Unit step function, 360
V
$V = r^{1/2}T$ transformation, 214–215
W
Wiedemann–Franz law, 665