Contents

Contributors xiii

Preface to the Second Edition xv

1 Introduction to Food Emulsifiers and Colloidal System 1
 Viggo Norn
 1.1 Introduction 1
 1.2 Food emulsifiers 6
 References 18

2 Lecithins 21
 Hanns-Georg Bueschelberger, Susanne Tirok, Ilona Stoffels
 and Arnulf Schoeppe
 2.1 Introduction to lecithins and phospholipids 22
 2.1.1 Some history 22
 2.1.2 Phospholipids 22
 2.1.3 Occurrence of phospholipids 24
 2.2 Production of lecithins 25
 2.2.1 Vegetable lecithin 26
 2.2.2 Animal lecithins 27
 2.3 Further processing of lecithins 27
 2.3.1 Standardization 27
 2.3.2 Modifications of lecithins 27
 2.3.3 Solvent extraction 30
 2.4 Quality aspects of lecithins 33
 2.4.1 Acetone-insoluble matter (AI) 34
 2.4.2 Toluene-insoluble (TI) 34
 2.4.3 Acid value (AV) 34
 2.4.4 Peroxide value (PV) 34
 2.4.5 Water content (H₂O) 35
 2.5 Physico-chemical aspects of lecithins 35
 2.5.1 Solubility in organic solvents 35
 2.5.2 Behaviour in water 35
CONTENTS

- 2.5.3 Melting points 36
- 2.5.4 Surface activity 36
- 2.5.5 Lecithins and the HLB system 37

2.6 Applications of lecithins in the food industry 38
 - 2.6.1 Lecithin in chocolate, coatings and confectionaries 39
 - 2.6.2 Lecithins in the baking industry 45
 - 2.6.3 Instant technology 50
 - 2.6.4 Emulsions 53
 - 2.6.5 Other applications 58

2.7 Market outlook 59
Acknowledgement 60
References 60

3 Ammonium Phosphatides 61

Viggo Norn

- 3.1 Introduction 61
- 3.2 Production of ammonium phosphatides 62
- 3.3 Physical and chemical properties of ammonium phosphatides 65
- 3.4 Food applications of ammonium phosphatides 65
- 3.5 Other food applications 71
- 3.6 Summary 71
References 72

4 Mono- and Diglycerides 73

Hans Moonen and Henny Bas

- 4.1 Introduction 73
- 4.2 The Products 74
 - 4.2.1 Production of monoglycerides 74
 - 4.2.2 Molecular distillation 75
 - 4.2.3 Chemical and physical properties 75
 - 4.2.4 HLB value 76
 - 4.2.5 Addition of antioxidants 76
 - 4.2.6 Legal considerations 77
 - 4.2.7 Behaviour of monoglycerides in the presence of water 77
 - 4.2.8 Nutritional value 79
- 4.3 Applications 79
 - 4.3.1 Cakes 82
 - 4.3.2 Margarines and spreads 85
 - 4.3.3 Ice cream 86
Acknowledgements 90
References 90

5 Acid Esters of Mono- and Diglycerides 93

Rolf Gaupp and Wolfgang Adams

- 5.1 E472a (ACETEM) 93
 - 5.1.1 Chemical properties of ACETEM 94
 - 5.1.2 Manufacturing of ACETEM 96
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.3</td>
<td>Appearance and physical properties</td>
<td>97</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Solubility</td>
<td>97</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Phase behaviour</td>
<td>100</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Surface-active properties</td>
<td>100</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Special properties of ACETEM</td>
<td>100</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Safety</td>
<td>101</td>
</tr>
<tr>
<td>5.1.9</td>
<td>Typical applications in food</td>
<td>101</td>
</tr>
<tr>
<td>5.1.10</td>
<td>Non-food applications</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>E472b (LACTEM)</td>
<td>102</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Chemical properties of LACTEM</td>
<td>102</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Manufacturing of LACTEM</td>
<td>105</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Appearance and physical properties</td>
<td>106</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Solubility</td>
<td>106</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Phase behaviour</td>
<td>106</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Surface activity</td>
<td>106</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Special properties of LACTEM</td>
<td>106</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Safety in use</td>
<td>108</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Typical applications in food</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>E472c (CITREM)</td>
<td>108</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Chemical properties of CITREM</td>
<td>109</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Manufacturing of CITREM</td>
<td>111</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Appearance and physical properties</td>
<td>111</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Solubility</td>
<td>111</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Phase behaviour</td>
<td>113</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Surface-active properties</td>
<td>113</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Special properties of CITREM</td>
<td>114</td>
</tr>
<tr>
<td>5.3.8</td>
<td>Safety in use</td>
<td>114</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Typical applications in food</td>
<td>115</td>
</tr>
<tr>
<td>5.3.10</td>
<td>Non-food applications</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>E472e (DATEM)</td>
<td>116</td>
</tr>
<tr>
<td>5.5</td>
<td>E472d (TATEM)</td>
<td>116</td>
</tr>
<tr>
<td>5.6</td>
<td>E472f (MATEM)</td>
<td>116</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Appearance</td>
<td>117</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Solubility</td>
<td>117</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Safety in use</td>
<td>117</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Typical applications in food</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>119</td>
</tr>
</tbody>
</table>

6 Diacetyl Tartaric Esters of Monoglycerides (DATEM) and Associated Emulsifiers in Bread Making

Rolf Gaupp and Wolfgang Adams

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>What are DATEM?</td>
<td>121</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Chemical characterization</td>
<td>121</td>
</tr>
<tr>
<td>6.2</td>
<td>General properties of DATEM</td>
<td>123</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Appearance</td>
<td>123</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Thermostability</td>
<td>123</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Hydrolysis</td>
<td>125</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Storage</td>
<td>125</td>
</tr>
</tbody>
</table>
6 Physical and chemical properties of DATEM

6.3 Physical properties
6.3.1 Physical properties
6.3.2 Solubility
6.3.3 Mesomorphic phase behaviour
6.3.4 Surface-active properties
6.3.5 Safety

6.4 Typical applications of DATEM in food

6.5 DATEM in the baking process

6.5.1 Bread making
6.5.2 Flour
6.5.3 Interaction of DATEM with starch
6.5.4 Interaction of DATEM with flour proteins
6.5.5 Interaction of DATEM with flour lipids
6.5.6 Use and action of DATEM during manufacturing and storage of baked goods

6.6 Action of emulsifiers in fine baked goods

6.6.1 DATEM in fine baked goods

6.7 Summary and conclusions

References

7 Sucrose Esters

7.1 Introduction
7.2 Early history of sucrose esters
7.3 Production routes to sucrose esters
7.4 Purification methods for sucrose esters
7.5 Sucroglycerides and sucrose ester detergents
7.6 Functional properties of sucrose esters
7.6.1 Emulsification
7.6.2 Interactions with proteins (gluten, dairy proteins)
7.6.3 Interactions with starch
7.6.4 Control of sugar crystallization
7.6.5 Aeration and foam stabilization
7.6.6 Anti-microbial properties
7.7 Physico-chemical properties of sucrose esters
7.7.1 Solubility
7.7.2 pH stability
7.7.3 Thermal stability
7.7.4 Preparation of sucrose ester solutions

7.8 Food applications

7.8.1 Dressing and sauces
7.8.2 Confectionery
7.8.3 Bakery
7.8.4 Icings and fillings
CONTENTS

7.8.5 Ice cream 172
7.8.6 Special emulsions 173

7.9 Legal status 174
 7.9.1 Europe 174
 7.9.2 USA 174
 7.9.3 Canada 176
 7.9.4 Japan 176
References 176

8 Polyglycerol Esters 181
 Viggo Norn 181
 8.1 Introduction 181
 8.2 Legislation 182
 8.3 Synthesis of polyglycerol 182
 8.4 Synthesis of polyglycerol ester 185
 8.5 Properties of polyglycerol esters 188
 8.5.1 Stability 188
 8.5.2 Physical properties 189
 8.6 Food applications of polyglycerol ester 195
 8.6.1 Margarines 195
 8.6.2 Cakes 198
 8.6.3 Shelf life of baked products 202
 8.6.4 Creams and toppings 202
 8.6.5 Fats 203
 8.6.6 Other applications 203
 8.7 Conclusion 203
References 204

9 PGPR, Polyglycerolpolyricinoleate, E476 209
 Kim Christiansen 209
 9.1 Introduction 209
 9.2 Production of PGPR 210
 9.2.1 Synthesis of polyglycerol 210
 9.2.2 Synthesis of polyricinoleate 211
 9.2.3 Synthesis of PGPR 213
 9.3 Legal regulation 214
 9.4 Physical and chemical properties of PGPR 215
 9.5 Applications of PGPR 216
 9.5.1 Application in food 217
 9.5.2 Application in non-foods 225
 9.6 Conclusion 226
References 227
10 Propylene Glycol Fatty Acid Esters

Flemming Vang Sparsø

10.1 Introduction 231
10.2 Chemistry and physical properties 231
10.2.1 Pure, synthetic propylene glycol fatty acid esters 232
10.2.2 Commercial, mixed fatty acid esters of propylene glycol 233
10.3 Production 239
10.3.1 Regulatory status 241
10.4 Food applications 241
10.4.1 Aerated bakery products and cake mixes 241
10.4.2 Sponge cakes, fat-free cakes 243
10.4.3 Dessert products, toppings, non-dairy whipping creams, etc. 244
10.4.4 Ice cream 248
10.4.5 Other applications 249
References 249

11 Stearoyl-2-Lactylates and Oleoyl Lactylates

Troy Boutte and Larry Skogerson

11.1 Introduction 251
11.2 Lactylate regulations 252
11.3 Lactylate manufacturing 253
11.4 Lactylate chemistry 257
11.5 Lactylate applications 258
11.6 Interactions between lactylates and starch 258
11.7 Interactions between lactylates and proteins 260
11.8 Lactylates in yeast-raised bakery products and crumb softening 261
11.9 Dough strengthening 262
11.10 Cakes and chemically leavened baked goods 264
11.11 Lactylate use in cookies and crackers 266
11.12 Application of lactylates in pastas 268
References 269

12 Sorbitan Esters and Polysorbates

Tim Cottrell and Judith van Peij

12.1 Introduction 271
12.2 Historical development 272
12.3 Production 272
12.3.1 Production of sorbitan esters 272
12.3.2 Production of polysorbates 275
12.4 Physicochemical properties 276
12.5 Emulsifiers in solution 279
12.5.1 Emulsions 279
12.5.2 Molecular arrangement and Critical Micelle Concentrations (CMC) 279
12.5.3 Effect of temperature 280
CONTENTS xi

12.5.4 Protein-emulsifier interactions 281
12.5.5 Solubilization and microemulsions 282
12.6 Applications 284
12.6.1 Fine bakers’ wares 285
12.6.2 Bread 285
12.6.3 Active dry yeast 286
12.6.4 Beverages 286
12.6.5 Dairy 287
12.6.6 Margarine and spreads 288
12.6.7 Chocolate and confectionery coatings 289
12.7 Regulations 289
12.8 Toxicology 292
12.9 Concluding remarks 293
References 293

13 Application of Emulsifiers in Dairy and Ice Cream Products 297
Hanne K. Ludvigsen

13.1 Introduction to dairy technology 297
13.1.1 Milk proteins 298
13.1.2 Fat 298
13.1.3 Other milk constituents 298
13.1.4 Milk processing 299
13.2 Emulsifiers in dairy applications 299
13.2.1 Recombined milk 300
13.2.2 Imitation whipping cream 300
13.2.3 Powdered coffee whitener 301
13.3 Emulsifiers in ice cream 301
13.3.1 Composition of ice cream 302
13.3.2 Functionality of emulsifiers in ice cream 303
References 308

14 Regulation of Food Emulsifiers in the European Union 309
Frances Hunt

14.1 Safety evaluation of food emulsifiers 309
14.2 Authorization of food emulsifiers 311
14.3 Food additives in food emulsifiers 317
14.4 Purity criteria for food emulsifiers 317
14.5 Labelling of food emulsifiers 317
References 319

15 Analysis of Emulsifiers 321
Lars Preuss Nielsen

15.1 Introduction 321
CONTENTS

15.2 Official methods
 15.2.1 Wet chemical methods
 15.2.2 Physical methods
 15.2.3 Instrumental methods

15.3 Advanced analytics
 15.3.1 Molecular spectroscopy
 15.3.2 Chromatography
 15.3.3 Mass spectrometry

15.4 Choosing the analytical technique

References

Index