Contents

Foreword xiii
Preface to the Second Edition xv
About the Authors xix

1 Introduction 1
1.1 Overview of Projection Displays 1
1.2 Book Organization 4
1.3 What is not Covered 4

2 Markets and Applications 7
2.1 Overview 7
2.1.1 Microdisplays, Light Valves and Light Amplifiers 7
2.1.2 Emissive Systems 8
2.1.3 Laser-based Projection Technology 8
2.2 Applications and Performance Requirements 8
2.2.1 Differentiators among Projectors 9
2.2.2 Requisite Luminance Levels 11
2.2.2.1 Flux requirement for presentation and auditorium applications 12
2.2.3 Resolution 14
2.2.4 Electronic Cinema 15

3 Emissive Image Sources 17
3.1 Projection CRTs 17
3.1.1 Luminous Output of Projection CRTs 18
3.1.2 Phosphors 19
3.1.3 Resolution of Projection CRTs 22
3.1.4 Spot Size of Beam 24
3.1.5 Light Collection/Curvature 25
3.2 Field-emission Devices 26

4 Liquid Crystal Light Valves and Microdisplays 29
4.1 Active Matrices 30
4.1.1 Operation of Active-matrix Circuits 31
CONTENTS

4.1.1 Effects of leakage 33
4.1.2 Charging currents 34
4.1.2 Technologies 35
 4.1.2.1 α-Si TFTs 35
 4.1.2.2 Poly-Si TFTs 38
 4.1.2.3 Crystalline silicon active matrices 40
 4.1.2.4 Active matrices based on two terminal devices 42

4.2 Liquid Crystal Effects 43
 4.2.1 Liquid Crystal Cells 45
 4.2.2 Nematic Cells 46
 4.2.2.1 Parallel aligned layer cells 46
 4.2.2.2 Twisted nematic cells 46
 4.2.3 Polymer-dispersed Liquid Crystal (PDLC) 50
 4.2.4 Other Liquid Crystal Effects 51
 4.2.5 Liquid Crystal Effects for Reflective Microdisplays 52
 4.2.6 Liquid Crystal Inversion 53

5 Micro-electromechanical Devices 57
 5.1 DMD 57
 5.1.1 Device Operation 58
 5.1.2 Gray Scale 60
 5.1.3 Contrast and DLP Pixel Design 61
 5.2 Linear MEMS Arrays 62
 5.2.1 Grating Light Valve 62
 5.2.2 GEMS System 66
 5.3 MEMS Scanning Mirrors 66

6 Filters, Integrators and Polarization Components 71
 6.1 Factors affecting Projector Optical Performance 71
 6.2 Component Efficiency 72
 6.3 Spectral Filters 73
 6.3.1 Fresnel Reflection at Optical Surfaces 73
 6.3.2 Dichroic Filters 75
 6.3.2.1 Dichroic filters at non-normal incidence 78
 6.3.2.2 Dichroic filters in polarized light 80
 6.3.2.3 Dichroic filters in the imaging path 81
 6.3.2.4 Anti-reflection coatings 82
 6.3.3 Absorptive Filters 84
 6.3.4 Electrically Tunable Color Filters 85
 6.3.5 Mirrors 86
 6.3.6 Total Internal Reflection 89
 6.3.6.1 TIR prisms for angular separation 89
 6.3.7 Filters for UV Control 91
 6.3.8 Filters for IR Control 91
 6.3.9 Indium-Tin Oxide and Other Transparent Electrodes 93
 6.4 Integrators 94
 6.4.1 Lenslet Integrators 96
 6.4.2 Rod Integrators 100
 6.4.3 Integrators for Projectors with Laser or LED Illumination 102
 6.4.4 Other Integrator Types 103
 6.4.5 Light Guides 104
CONTENTS vii

6.5 Polarization Components 105
6.5.1 Absorptive Polarizers 106
6.5.2 Reflective Polarizer Technology 109
6.5.2.1 Brewster angle reflection 109
 (a) Brewster plate 109
 (b) MacNeille polarizing prisms 111
6.5.2.2 Birefringent multilayer reflective polarizer 114
6.5.2.3 Bertrand-Feussner prism 116
6.5.2.4 Wire grid polarizers 117
6.5.2.5 Other reflective polarizers 120
6.5.3 Polarization Conversion Systems 121
6.5.3.1 Polarization recycling 123
6.5.4 Polarizing Beam Splitters in the Imaging Path 124
6.5.5 Compensation Films 126

7 Projection Lenses and Screens 131
7.1 Projection Lenses 131
7.1.1 Three-lens Projectors 132
7.1.2 Single-lens Projectors 132
7.1.3 Zoom Lenses, Focal Length and Throw Ratio 136
7.1.4 Projection Lens Offset 137
7.1.5 Matching the Projection Lens to the Illumination Optical Path 141
7.2 Projection Screens 142
7.2.1 Projection Screen Gain 144
7.2.2 Multiple Projectors and Screen Gain 146
7.2.3 Rear Projection Screens 147
 7.2.3.1 Fresnel lens 147
 7.2.3.2 Fresnel lenses for thin RPTV systems 150
 7.2.3.3 Rear projection CRT screens 152
 (a) Double lenticular screens 152
 (b) TIR screens 155
 7.2.3.4 Microdisplay and light-valve rear-projection systems 157
7.2.4 Front Projection Screens 159
 7.2.4.1 Light rejecting front projection screens 160
7.3 Speckle in Projected Images 162
7.3.1 Speckle in Rear Projection Systems 162
7.3.2 Speckle with Laser Illumination 164

8 Light Sources for Light-valve and Microdisplay Projection Systems 169
8.1 Lamp Parameters 170
8.2 Types of Projection Lamps 170
8.2.1 Xenon Lamps 171
8.2.2 Metal-halide Types 172
8.2.3 The UHP Lamp 174
 8.2.3.1 Temporal properties of UHP lamps 177
8.2.4 Tungsten-halogen Lamps 178
8.2.5 Electrodeless Lamps 179
8.3 Lasers as Projection Light Sources 180
8.3.1 Choice of Laser Wavelengths 181
8.3.2 Laser Designs Suitable for Projection Applications 183
8.3.2.1 Laser architectures 184
8.3.2.2 Laser wavelength generation 187
8.3.3 Laser Safety 189
8.4 Light Emitting Diodes as Projection Light Sources 190
8.4.1 Performance Improvements in LEDs for Projection 191
8.4.2 Color with LEDs 192
8.4.3 Thermal Issues with LEDs 194
8.4.4 LED Drive Issues 195
8.5 Efficacy and Lumen Output 198
8.6 Spectral Characteristics of Lamps 200
8.6.1 Lamp Spectral Emission Lines 200
8.7 Light Distribution from a HID Lamp 201
8.8 Lamp Life 202
8.8.1 Lamp Servicing 203
8.8.2 Failure Mechanisms 203
8.8.2.1 Measurement of lamp life 203
8.9 Reflectors and Other Collection Systems 206
8.9.1 Reflectors with Conic Sections 206
8.9.2 Compound Reflectors 206
8.9.3 Constant Magnification Reflectors 208
8.9.4 Refractive Collection Systems 208
8.9.5 Collection Systems for LEDs 209
8.10 Lamp Ballasts and Ignitors 212

9 Scanned Projection Systems 217
9.1 CRT Projectors 217
9.1.1 Three-lens CRT Projectors 218
9.1.2 One-lens CRT Projectors 220
9.1.3 Convergence of CRT Projection Systems 221
9.1.4 Lumen Output of CRT Projectors 223
9.2 Scanned Laser Projectors 225
9.2.1 Raster Scan Patterns 226
9.2.2 Laser Projectors with Two-axis Scanning 228
9.2.3 Laser Projectors with a Single Scanning Axis 229

10 Microdisplay System Architectures 233
10.1 Microdisplay Systems 233
10.2 Three-panel Systems with Transmissive Microdisplays 234
10.2.1 Three-panel Equal Path 235
10.2.2 Unequal Path Systems 237
10.3 Three-panel LCoS Projector Architectures 239
10.3.1 Three Polarizing Beamsplitters with a Dichroic Combiner 239
10.3.2 Four-cube LCoS Architectures 240
10.3.2.1 Four-panel, high contrast LCoS architecture 241
10.3.3 Three-panel, Three-lens Projectors 242
10.4 Single-panel Projectors 243
10.4.1 Sub-pixelated Projectors 244
10.4.1.1 Microfilter projector 244
10.4.1.2 Angular color separation projectors 245
10.4.1.3 Resolution of sub-pixelated projectors 246
10.4.2 Color-field Sequential Systems
 10.4.2.1 Addressing color-field sequential systems
 10.4.2.2 Color wheel and related systems
 10.4.2.3 Three-light-source field sequential systems
 10.4.2.4 Address-and-flash systems
 10.4.2.5 Rotating drum systems
 10.4.2.6 Scrolling color systems

10.5 Two-panel Systems

10.6 Schlieren Optics-based Projectors
 10.6.1 Dark Field and Bright Field Systems
 10.6.2 Schlieren Light-valve Systems

10.7 Stereoscopic 3D Projectors
 10.7.1 Separation by Polarization
 10.7.2 Stereoscopic 3D with Color Separation
 10.7.3 Eye-sequential 3D Systems with Active Glasses

11 Modeling Lumen Output
 11.1 Simplified Model
 11.2 Light Collection and Étendue
 11.2.1 Definition of Étendue
 11.2.1.1 Étendue at a flat surface
 11.2.2 Étendue Limited Systems
 11.2.3 Lumen vs Étendue Function
 11.2.3.1 Étendue conserving transformations
 11.2.3.2 Shape conversion
 11.2.3.3 Usable étendue
 11.2.3.4 Limitations of lumen vs étendue model
 11.3 Integrators and Lumen Throughput
 11.3.1 Overfill Losses
 11.3.2 Integrator Étendue and Collection Efficiency
 11.4 Microdisplay and Light-valve Properties
 11.4.1 Panel Transmission
 11.4.2 Modulation Efficiency
 11.4.3 Duty Cycle
 11.5 Full Colorimetric Model of the Projector
 11.5.1 White Light Throughput prior to Color Correction
 11.5.2 Color Correction to the desired White Point
 11.5.3 Single-panel Color Sequential Projectors
 11.5.4 Colorimetric and Throughput Issues with Projectors with more than
 Three Primary Colors
 11.5.5 Color Separation Efficiency
 11.6 Problems with Lumen Throughput Calculations
 11.7 Lumen Output Variation in Production

12 Projector Lumen Throughput
 12.1 Throughput of a Simple Transmissive Projector
 12.2 Throughput in a Three-panel Projector
 12.3 Throughput Estimate using the Full Colorimetric Model

13 Characteristics and Characterization
 13.1 Characteristics of the Human Visual System
 13.2 Spatial Characteristics of the Image
Contents

13.2.1 Pixel Count 313

13.2.2 Modulation Transfer Function 314

13.2.2.1 MTF of raster-scanned displays 315

13.2.2.2 MTF of sampled systems 316

13.2.2.3 MTFs of other elements 318

13.2.2.4 Convergence 320

13.2.2.5 MTF of projection screens 322

13.2.2.6 MTF of electronic images vs film 322

13.2.3 Image Quality Metrics 323

13.3 Luminance, Contrast and Color 325

13.3.1 Luminance and Brightness 325

13.3.1.1 Measurement of luminance 326

13.3.1.2 ANSI lumens 327

13.3.1.3 Center weighted lumens 329

13.3.1.4 Luminance patch tests 329

13.3.2 Contrast 330

13.3.3 Colorimetry 332

13.3.3.1 The specification of color 332

13.3.3.2 The gamut of real colors 333

13.3.3.3 White point of displays 334

13.3.3.4 Color gamuts of displays 335

13.3.3.5 Expanded color gamuts and displays with more than three primary colors 337

13.3.4 Measurement of the Luminance and Color of Projection Systems 340

13.3.5 Display Gamma and Gray Scale 342

13.4 Image Content-dependent Adaptive Processes 343

14 Image Artifacts 347

14.1 Spatial Artifacts 347

14.1.1 Moiré: Alias and Beat Frequencies 348

14.1.1.1 Origins of Moiré 349

14.1.2 Screen Door Effect or Pixelation 353

14.1.2.1 Depixelation 354

14.2 Temporal Artifacts 355

14.2.1 Flicker 355

14.2.2 Image Smear, Judder and Motion Blur 358

14.2.3 Artifacts in Color-field Sequential Systems 360

14.2.3.1 Color breakup due to motion in the image 360

14.2.3.2 Color breakup due to saccadic motion of the eye 361

Appendix 1 Radiometry and Photometry 365

Appendix 2 Colorimetry 371

A2.1 Introduction 371

A2.2 CIE 1931 2° Color Matching Functions 372

A2.3 Calculation of Color 373

A2.4 Color Temperature 375

A2.5 The Chromaticity Diagram 375

A2.6 Color-luminance Difference Formulas 375

A2.7 Measurement of Color 377

A2.8 Tabulated CIE 1931 2° Photopic Color Matching Functions 380
Appendix 3 Lumen vs Étendue Parametric Model 383
 A3.1 Introduction 383
 A3.2 Definition of Étendue 384
 A3.3 Étendue at a Flat Surface 385
 A3.4 Étendue of a Cylindrical Surface 385
 A3.5 Lamp/Reflector Model 386
 A3.6 Comparison of Measured Data to the Model 389

Appendix 4 Glossary 393

Index 425