Contents

Preface IX
List of Contributors XI

1 Fundamental Reactions to Cleave Carbon–Carbon \(\sigma\)-Bonds with Transition Metal Complexes 1
Masahiro Murakami and Naoki Ishida
1.1 Introduction 1
1.2 Oxidative Addition 1
1.2.1 Oxidative Addition Utilizing Ring Strain 3
1.2.2 Chelation-Assisted Oxidative Addition 5
1.2.3 Oxidative Addition Driven by Aromatization 6
1.2.4 Oxidative Addition of Ketones 7
1.2.5 Oxidative Addition of Nitriles 11
1.2.6 Others 13
1.3 \(\beta\)-Carbon Elimination 14
1.3.1 \(\beta\)-Carbon Elimination of Late Transition Metal Alkyls 15
1.3.2 \(\beta\)-Carbon Elimination from Early Transition Metal Alkyls 16
1.3.3 \(\beta\)-Carbon Elimination of Late Transition Metal Alcoholates 17
1.4 Retroallylation 20
1.5 Migratory Deinsertion of a Carbonyl Group 22
1.6 Decarboxylation 24
1.7 Retro-oxidative Cyclization 25
1.8 1,2-Migration 27
1.9 Cleavage of C–C Multiple Bonds 29
1.10 Summary 30
References 30

2 Reactions of Three-Membered Ring Compounds 35
Takanori Matsuda
2.1 Introduction 35
2.2 Cyclopropanes 35
2.3 Bicyclo[1.1.0]butanes 40
2.4 Bicyclo[2.1.0]pentanes 43
Contents

2.5 Quadricyclanes and Related Compounds 45
2.6 Spiropentanes 47
2.7 Cyclopropanols 48
2.8 Vinylcyclopropanes 51
2.9 Methylene cyclopropanes 59
2.10 Alkynylcyclopropanes 70
2.11 Cyclopropyl Ketones and Imines 71
2.12 Cyclopropenes 73
2.13 Benzocyclopropanes 78
2.14 Cyclopropenones 80
2.15 Conclusion 82
References 83

3 Reactions of Four-Membered Ring Compounds 89
Takanori Matsuda
3.1 Introduction 89
3.2 Cubane Derivatives 89
3.3 Biphenylenes 90
3.4 Vinylcyclobutane and Methylene cyclobutane Derivatives 93
3.5 Cyclobutanols and Cyclobutanone Derivatives 95
3.5.1 Reactions Involving β-Carbon Elimination of Transition Metal Cyclobutanolates 95
3.5.2 Reactions Involving Formation of Five-Membered Metallacycles 108
3.6 Cyclobutenones and Cyclobutenediones 112
3.7 Conclusion 115
References 115

4 Reactions Involving Elimination of CO₂ and Ketones 119
Tetsuya Satoh and Masahiro Miura
4.1 Introduction 119
4.2 Reactions of Benzoic Acids 119
4.2.1 Arylation 119
4.2.2 Alkenylation 127
4.2.3 Annulation 130
4.2.4 Miscellaneous Reactions 132
4.3 Reactions of Heteroarenecarboxylic Acids 134
4.4 Reactions of Acrylic Acids 139
4.5 Reactions of Propiolic Acids 142
4.6 Reactions of α-Keto Carboxylic Acids 144
4.7 Reactions of Alkanoic Acids 148
4.8 Reactions of Tertiary Alcohols 151
4.8.1 Arylation 151
4.8.2 Alkenylation, Annulation, and Alkylation 155
5 Retro-allylation and Deallylation 165

Hideki Yorimitsu

5.1 Introduction 165
5.2 Retro-allylation 165
5.2.1 Ruthenium Catalysis: The Pioneer 167
5.2.2 Palladium Catalysis: Regio- and Stereoselective Allylation of Aryl Halides 168
5.2.2.1 Advantage of Palladium-Catalyzed Allylation via Retro-allylation 168
5.2.2.2 Palladium-Catalyzed Regio- and Stereoselective Allylation via Retro-allylation 170
5.2.2.3 Variants of Palladium-Catalyzed Retro-allylation 176
5.2.3 Nickel Catalysis 179
5.2.4 Rhodium Catalysis 181
5.2.5 Copper Catalysis 184
5.3 Deallylation 185
5.3.1 Oxidative Addition of Allylic Compounds 185
5.3.2 Metalation–β-Carbon Elimination Sequence 187
5.4 Summary and Conclusions 189

References 190

6 Reactions via Cleavage of Carbon–Carbon Bonds of Ketones and Nitriles 193

Mamoru Tobisu

6.1 Introduction 193
6.2 Catalytic Reactions of Ketones via C–C Bond Cleavage 194
6.2.1 Reactions of Ketones without Chelation Assistance 194
6.2.2 Reactions of Ketones Containing a Directing Group 196
6.2.3 Reactions of Ketones Using a Temporary Directing Group 200
6.2.4 C–C Bond Cleavage of Ketones via Pathways Other than Oxidative Addition 202
6.2.4.1 C–C Bond Cleavage of 1,3-Dicarbonyl Compounds 202
6.2.4.2 C–C Bond Cleavage of Ketones Other than 1,3-Dicarbonyl Compounds 203
6.3 Catalytic Reactions of Nitriles via C–C Bond Cleavage 205
6.3.1 C–CN Bond Cleavage via Oxidative Addition 205
6.3.2 C–CN Bond Cleavage via Silylmetalation/Isocyanide Extrusion Sequence 212
6.3.3 C–CN Bond Cleavage via Other Mechanisms 215
6.4 Summary and Outlook 216

References 217
Contents

7 Miscellaneous

Masahiro Murakami and Naoki Ishida

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>221</td>
</tr>
<tr>
<td>7.2 Cleavage of C–C Single Bonds</td>
<td>221</td>
</tr>
<tr>
<td>7.3 Cleavage of C=C Double Bonds</td>
<td>235</td>
</tr>
<tr>
<td>7.4 Cleavage of C–C Bonds of Aromatics</td>
<td>237</td>
</tr>
<tr>
<td>7.5 Cleavage of C≡C Triple Bonds</td>
<td>242</td>
</tr>
<tr>
<td>7.6 Summary</td>
<td>248</td>
</tr>
</tbody>
</table>

References | 248 |

8 Total Syntheses of Natural Products and Biologically Active Compounds by Transition-Metal-Catalyzed C–C Cleavage

Masahiro Murakami and Naoki Ishida

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>253</td>
</tr>
<tr>
<td>8.2 Synthesis of (±)-Nanaomycin A through Alkyne Insertion into a C–C Bond of Benzocyclobutenedione</td>
<td>253</td>
</tr>
<tr>
<td>8.3 Enantioselective Synthesis of (–)-Pseudolaric Acid B via an Intramolecular [5+2] Cycloaddition Reaction of a Vinylcyclopropane with an Alkyne</td>
<td>254</td>
</tr>
<tr>
<td>8.4 Enantioselective Synthesis of (–)-Esermethole via Asymmetric Alkene Insertion into a C–C Bond of Aryl Cyanides</td>
<td>256</td>
</tr>
<tr>
<td>8.5 Enantioselective Synthesis of Benzobicyclo[2.2.2]octenones via Asymmetric Alkene Insertion into a C–C Bond of Cyclobutanones</td>
<td>257</td>
</tr>
<tr>
<td>8.6 Synthesis of the Proposed Structure of Cycloinumakiol through Site-Selective Insertion of Alkenes into a C–C Bond of Benzocyclobutenones</td>
<td>259</td>
</tr>
<tr>
<td>8.7 Enantioselective Synthesis of (–)-(R)-Herbertenol through Asymmetric C–C Cleavage</td>
<td>260</td>
</tr>
<tr>
<td>8.8 Enantioselective Synthesis of (+)-Laurene via Ring-Expansion of 1-Vinylcyclobutanol</td>
<td>261</td>
</tr>
<tr>
<td>8.9 Synthesis of (±)-Cuparenone through Skeletal Reorganization of Spiropentanes</td>
<td>262</td>
</tr>
<tr>
<td>8.10 Total Synthesis of (–)-Cyanthiwigin F by Decarboxylative Asymmetric Allylation</td>
<td>264</td>
</tr>
<tr>
<td>8.11 Total Syntheses via Hydrogenolysis of Cyclopropanes</td>
<td>265</td>
</tr>
<tr>
<td>8.12 Total Syntheses via Decarbonylation</td>
<td>266</td>
</tr>
<tr>
<td>8.13 Summary and Conclusions</td>
<td>269</td>
</tr>
</tbody>
</table>

References | 270 |

Index | 273 |